Читать книгу Стоматологические конструкционные материалы: патофизиологическое обоснование к оптимальному использованию при дентальной имплантации и протезировании. - А. К. Иорданишвили - Страница 4
Глава 1
Конструкционные материалы в стоматологии и их характеристика
Оглавление1.1. Проблемы неблагоприятных системных воздействий на организм человека и стоматологическая патология
В специальной литературе при обозначении материалов, применяемых для изготовления имплантатов, используются два термина – биоматериалы и биосовместимые материалы.
Однако, если «био», являясь первой составной частью сложных слов, соответствует по значению слову «биологический», то термин «биоматериал» означает, что этот материал имеет биологическое происхождение. Поэтому биоматериалами следует называть материалы, имеющие биологическое происхождение и применяемые в хирургии для восстановления целостности тканей и функции органов.
Имея биологическое происхождение, биоматериалы являются по сути трансплантатами и поэтому не могут рассматриваться как материалы для изготовления имплантатов. Вместе с тем эти материалы достаточно широко применяются в дентальной имплантологии. Поэтому краткое описание и оценка их биологических свойств представляется вполне уместными.
Биоматериалы
Основное назначение биоматериалов при имплантации – управление процессами остеогенеза и создание адекватных анатомических условий для имплантации. Биологические материалы, применяемые для реконструкции костной ткани, могут обладать остеоиндуктивными свойствами (способностью вызывать остеогенез) или остеокондуктивными (обеспечивать продвижение фронта остеогенеза по поверхности материала).
Материалом, имеющим одновременно те и другие свойства, можно считать только аутотрансплантаты кости. Костные аутотрансплантаты содержат не только генетически идентичные костные морфогенетические белки, остеогенные клетки и остеоциты, вызывающие остеоиндукцию, но и костный матрикс, обеспечивающий остеокондукцию [Венц Б., 1998; Bays R.A., 1980; Kato E., Gimcher M., 1974].
Остальным известным на сегодняшний день биологическим материалам присуще только одно из этих свойств – какие, смотри табл.1.
Например, остеоиндуктивные свойства имеют обогащенная тромбоцитами плазма крови, содержащая высокую концентрацию остеоиндуктивных белков (PDG-F, TGF-В и IGF-I), а также препараты, содержащие костные морфогенетические белки [Венц Б., 1998; Brekke J., Toth J., 1998; Groeneveld E., 1999; Sumner D., 1995].
Остеокондуктивными свойствами обладают костные гомо– и гетеротрансплантаты [Freinberg S., Fonseca R., 1986; Lynch S., Genco R., Marx R., 1999].
Остеоиндуктивные свойства они утрачивают частично или полностью в процессе обработки и стерилизации [Aspenberg R., Lindqvist S.-B., 1998; Bays R.A., 1983].
К остеокондуктивным материалам биологического происхождения следует отнести некоторые кальций-карбонатные и кальций-фосфат-ные материалы, коллаген и производные протеинов эмалевого матрикса зубов (Эмдогейн®).
Для получения биологических кальций-карбонатных материалов используют натуральные кораллы, а кальций-фосфатных – кости животных. Получаемый из кораллов материал представляет собой поли-кристаллическую керамику, основу которой составляет кристаллический карбонат кальция – арагонит [Chave K., Smith S., Roy K., 1972; Guillemin G., 1989; Lynch S., Genco R., Marx R., 1999].
Биосовместимые материалы
Согласно определению W. Wagner (1991) биосовместимые материалы – это материалы, имеющие небиологическое происхождение и применяемые в медицине для достижения взаимодействия с биологической системой.
Биосовместимым с костной тканью может считаться материал, который в достаточной степени инертен относительно остеоиндукции и активен относительно остеокондукции.
Объяснить это положение можно следующим образом. Остеоиндуктивными свойствами обладают только специфические белки – остеоиндукторы [Reddy A., 1989; Wozney J., 1989]. Поэтому подобные свойства присущи только биологическим материалам и препаратам, содержащим эти белки и специфические факторы роста.
Таблица 1
Биологические материалы, применяемые в хирургической стоматологии и имплантологии
Небиологические материалы не могут вызвать экспрессию генов, отвечающих за митоз и дифференциацию остеогенных клеток в остеобласты, и, следовательно, любая активность этих материалов по отношению к геному стволовых мезенхимальных клеток, скорее всего, будет оказывать неадекватное или негативное воздействие на процесс остеоиндукции.
Исходя из вышесказанного, материал имплантата, с одной стороны, не должен воздействовать на геном клеток организма, ингибировать белки-остеоиндукторы, угнетать митоз остеогенных клеток, а в дальнейшем деятельность остеобластов и остеоцитов. С другой стороны, поверхность материала должна обеспечивать адсорбцию белков и адгезию клеток, органического и минерального компонентов костного матрикса, а также его физико-химическую связь с поверхностью имплантата.
С точки зрения активности по отношению к остеокондукции и взаимодействию с костным матриксом V. Strunz (1984) и J. Osborn (1985) разделили биосовместимые материалы на биоактивные, биоинертные и биотолерантные.
Биоактивные небиологические материалы – это материалы, которые включаются в ионный обмен и метаболизм костного матрикса и частично или полностью замещаются костной тканью в процессе её регенерации.
Характерной особенностью этих материалов является полная либо частичная их деградация (рассасывание) со временем и замещение нормальной костной тканью [Strunz V., 1984].
Биоактивными материалами являются кальций-фосфатные соединения, сульфат кальция, биостекло и материалы на основе некоторых высокомолекулярных полимеров.
Кальций-фосфатные материалы (трикальцийфосфат и гидроксиапатит) получают не только из биологического сырья, но и методами химического осаждения, синтеза или спекания [Lynch S., Genco R., Marx R., 1999; Spiekermann H. et al., 1995].
Являясь аналогом главного компонента минеральной основы кости, гидроксиапатит обладает выраженными остеокондуктивными свойствами, обеспечивает адгезию белков и клеток костной ткани, активно включается в ионный обмен и метаболизм костного матрикса, поддерживает ионные и ковалентные связи с минералами кости [Hislop W., Finlay P., Moos K., 1993; Lynch S., Genco R., Marx R., 1999; Pinholt E., Bang G., Haanaes H., 1991].
Создавая оптимальные условия для остеокондукции, гидроксиапатит в то же время подвергается остеокластической резорбции, растворяется в жидкой среде и рассасывается в течение 6-10 месяцев [Bguer G., 1990; Donohue W., Mascres С., 1993; Wagner W., 1991]. Причём его резорбция в губчатом слое кости происходит быстрее, чем в компактном [Piattelli A. et al., 1993].
В клинической практике применяется и нерассасывающийся гидроксиапатит, который представляет собой композиционный гидроксиапатитно-керамический материал в виде блоков или крупных гранул, полученных при спекании. Этот материал подвергается частичной резорбции, причём отдельные гранулы или фрагменты блоков, инкорпорированные вновь образованной костью, могут сохраняться на протяжении 3–5 лет [Лысенок Л.Н., 1997; Hoogendoorn H. et al., 1984].
Трикальцийфосфат не является аналогом аморфных кальций-фосфатных соединений минеральной части костного матрикса. Вместе с тем этот материал метаболически достаточно активен. In vivo большая его часть трансформируется в гидроксиапатит, а оставшаяся часть растворяется [Lynch S., Genco R., Marx R., 1999].
Сульфат кальция, или «парижский пластырь», – один из первых биосовместимых остеопластических материалов. Впервые был использован Dreesman в 1892 г. для заполнения костных дефектов. Этот материал обладает остеокондуктивными свойствами, хорошо переносится тканями, резорбируется в течение месяца, при этом происходит его замещение костной тканью [Островский А.В., 1999; Peltier L., Lillo R., 1955; Peltier L., 1961].
Сульфат кальция широко используется в оториноларингологии, ортопедии и травматологии [Coetzee A., 1980]. Может применяться при операции синус-лифт, а также хирургическом лечении заболеваний пародонта в качестве остеопластического материала [Shaffer C., App G., 1971].
Стекло – неорганический твердый материал, состоящий из трёх основных химических соединений: SiO2, CaCO3 и Na2CO3. К биосовместимым относятся стёкла, в состав которых входят: SiO3 или SiO2 (30–45 %), Р2О5 или Р2О2 (6 %), СаО (15–25 %) и Na2O (около 25 %) [Островский А.В., 1999; Хенч Л., 1998].
Разновидностью биосовместимого стекла являются некоторые виды ситаллов. С физической точки зрения ситалл – это закристаллизованное стекло. Биосовместимые ситаллы имеют схожий химический состав со стеклом, но кроме SiO3, P2O5, СаО и Na2O могут содержать ещё ряд соединений: MgO, А12О3, Та2О5 и др. [Хенч Л., 1998; Зубов Ю.Н., Дудко А.С., Пикулик Л.Н., 2000].
Биологическая активность биосовместимых стёкол и ситаллов проявляется за счёт химической деградации (растворимости) в жидких биологических средах поверхности этих материалов. В результате на поверхность выходят ионы кальция и соединения фосфора, способствующие образованию на поверхности материала кристаллов апатитов, которые формируют центры минерализации остеоида и обеспечивают физико-химическую связь матрикса кости с поверхностью материала [Штрунц В., Гросс У., Мэннер К., 1998].
Биоактивные полимеры молочной и лимонной кислот применяются в качестве рассасывающихся барьерных мембран [Островский А.В., 1999; Vernino A. et al., 1999]. К подобным полимерам также относятся композиционные материалы на основе высокомолекулярного полиэтилена с минеральными наполнителями – гидроксиапатитом или гидроксидом кальция, применяемые для остеопластики дефектов и наращивания костной ткани [Воложин А.И. и др., 1999; Ashman A., 1992; Yukna R., 1990].
Биоинертные материалы
К этой группе относятся материалы, поверхность которых может обеспечить физико-химическую связь с костным матриксом, но при этом практически не включающиеся в метаболизм костной ткани и не подвергающиеся деградации на протяжении всего периода взаимодействия с окружающими тканями.