Читать книгу Mechanics: The Science of Machinery - A. Russell Bond - Страница 16

CHAPTER III

Оглавление

Table of Contents

MACHINES FOR MAKING MACHINES

WHILE we may glory in the wonderful mechanical progress of to-day, we must not overlook the marvelous skill of the ancient artisan nor forget that it is to his inventive genius that we are indebted for practically every hand tool we possess. Only a few special tools owe their origin to the modern inventor. All the rest date back beyond the twilight of history. We have merely improved upon these tools by slight changes of design or the employment of better materials in their construction.

As users of these tools we cannot begin to compare with the skilled workman of ancient days. Our progress is shown not in the development of skill, but in the loss of it. We have taken the tool out of the human hand and put it into an inanimate machine. It is only very recently that the tool was delivered to the machine and that act marked the dawn of the present remarkable mechanical era.

Machines for making machines date back to the time of the early Egyptians. They had their pole lathes and bow drills, but these machines only partially relieved the workman of his labors, and the quality of the work still depended upon a degree of skill that was acquired only through years of patient apprenticeship.

The pole lathe, by the way, consisted merely of a pair of centers between which the work was mounted, a pole attached to the ceiling and a strap or rope passed around the work and fastened at one end to a pole and at the other to a pedal resting against the floor. (See Figure 24.) When the pedal was depressed, the strap was pulled down and the work was revolved. On releasing the pedal, the spring of the pole pulled the strap up and reversed the rotation of the work. Thus by alternately depressing and releasing the pedal, the work was intermittently revolved against a chisel which was rested on a block and guided by the workman. Small work could be turned out on such a lathe with considerable precision, but when it came to large parts, particularly parts of steel, the workman was easily tired by the effort of operating the pedal and was apt to be irregular in the guiding of the tool.


FIG. 24.—PRIMITIVE POLE LATHE

Up to the middle of the eighteenth century practically no advance had been made over the ancient lathe of the Egyptians, and when, 150 years ago, the steam engine was invented the task of building the engine seemed almost insuperable.

James Watt was a maker of mathematical instruments, a man of great skill and precision as a craftsman, but he dealt with parts of small dimensions. When he conceived of his steam engine, he mentally pictured the various parts as turned out with all the accuracy and finish that was possible in the diminutive members of a scientific instrument. To him it seemed perfectly feasible to turn a cylinder which would be practically perfect in contour, and to fit it with a piston around which no steam could leak. With the lathe then in existence such a fit was easily possible on small work. But when he undertook to have the cylinder of his engine bored, he discovered that there was no machine that could begin to do the work properly. In fact, when Smeaton, who was a prominent engineer of that time, investigated Watt’s steam engine, he declared that it was such a complicated piece of work that neither tools nor workmen existed that could build it. In Watt’s first engine, the cylinder was only six inches in diameter and two feet long, and a special type of boring machine was devised to bore the forged cylinders. But the boring was so irregular that when the piston was inserted and the steam was turned on, nothing would stop the flow of steam that leaked around the piston. In vain did James Watt use cork, oiled rags, tow, paper, and even old hats to stop the leakage. However, the boring machine was improved and later a cylinder, eighteen inches in diameter, was bored with such accuracy that the large diameter exceeded the small diameter in the worst place by only ⅜ of an inch. This Watt considered a very good bit of turning. To-day cylinders of that size that vary from true by half the thickness of the paper that this is printed on would be thrown out as defective.

It was in 1769 that Watt invented the steam engine, but that great event did not mark the dawn of the present era of machinery. For a quarter of a century thereafter there was little progress in the development of machine tools. A boring machine was built that did fair work. There were a few sawmills in which wind power was employed to drive the saw. But lathes were still driven by foot power and the cutting tool was still held and guided by hand.

Mechanics: The Science of Machinery

Подняться наверх