Читать книгу Производство заготовок. Трубы - А. С. Килов - Страница 4

1 Материалы заготовок и деталей
1.1 Свойства металлов

Оглавление

При выборе материала для конструкции исходят из комплекса свойств, которые подразделяют на механические, физико-химические, технологические и эксплутационные.

К механическим относят:

– прочность;

– твердость;

– износостойкость;

– пластичность.

Прочность – способность материала сопротивляться деформации или разрушению. Показателем прочности является предел прочности:

δd= Р/F0,

где Р – нагрузка разрушения стандартного образца, Н;

F 0 – площадь поперечного сечения, мм2.

Пластичность – способность твердых тел изменять форму и размеры без разрушения под действием внешней нагрузки. Пластичность определяется максимальным относительным удлинением при разрыве:

δ = ((l-l0)/l)100 %,

где l – длина после разрыва, мм;

l 0 – первоначальная длина, мм.

Твердость – способность материала сопротивляться проникновению в него другого тела, например шарика.

Износостойкость – способность материала сопротивляться поверхностному разрушению под действием поверхностного трения.

К физико-химическим свойствам относят:

– температуру плавления;

– плотность;

– электро- и теплопроводность.

К технологическим свойствам относят их способность поддаваться различным способам обработки (литейные свойства, ковкость, свариваемость, обрабатываемость режущими инструментами).

Способность металлов и сплавов к литью.

Не все сплавы в одинаковой степени пригодны для изготовления отливок. Из одних сплавов (серого чугуна, силумина) можно легко изготовить отливку сложной конфигурации, а из других (титановых сплавов, легированных сталей и др.) получение отливок сопряжено с определенными трудностями. Получение качественных отливок без раковин, трещин и других дефектов зависит от литейных свойств сплавов. К основным литейным свойствам сплавов относят жидкотекучесть, усадку сплавов, склонность к образованию трещин, газопоглощение и ликвацию.

Жидкотекучесть – способность расплавленного металла течь по каналам литейной формы, заполнять ее полости и четко воспроизводить контуры отливки. При высокой жидкотекучести литейные сплавы заполняют все элементы литейной формы, при низкой – полость формы заполняется частично, в узких сечениях образуются недоливы. Жидкотекучесть сплавов определяют по специальным пробам. За меру жидкотекучести принимают длину заполненной спирали в литейной форме, и она зависит от многих факторов. Например, повышение температуры заливки увеличивает жидкотекучесть всех сплавов. Чем выше теплопроводность материала формы, тем быстрее отводится тепло от залитого металла, тем ниже жидкотекучесть. Неметаллические включения снижают жидкотекучесть сплавов. На жидкотекучесть влияет химический состав сплавов: с увеличением в исходном материале содержания серы, кислорода и хрома жидкотекучесть снижается, а с повышением содержания Р, Si, Al, C – увеличивается.

В зависимости от жидкотекучести сплава выбирают минимальную толщину стенок отливок. Например, при изготовлении мелких отливок из серого чугуна в песчаных формах минимальная толщина стенок составляет от 3 до 4 мм, для средних от 8 до 10 мм, в для крупных от 12 до 15 мм; для стальных отливок, соответственно, от 5 до 7, от 10 до 12 и от 15 до 20 мм.

Способность материала к обработке давлением.

Способность материала деформироваться под действием внешних нагрузок не разрушаясь и сохранять измененную форму после прекращения действия усилий, называется пластичностью. Таким образом, пластичность – это возможность металла изменять форму или деформироваться при обработке давлением без нарушения целостности.

Количественно пластичность можно характеризовать величиной максимальной деформации, которую можно сообщить металлу до появления в нем разрушения. Общая пластическая деформация поликристаллов (это практически все применяемые металлы и сплавы) складывается из двух видов деформаций – внутрикристаллитной и межкристаллитной. Внутрикристаллитная деформация это скольжение и образование двойников в кристаллах, а межкристаллитная – это повороты и смещения зерен относительно друг друга.

В результате обработки давлением зерна кристаллов частично раздробляются и вытягиваются в направлении наибольшего течения металла, что вызывает его упрочнение. Превышение напряжений пластической деформации приводит к возникновению трещин, то есть приводит к разрушению металла. Следовательно, в обработке давлением важно знать условия деформирования, при которых происходит пластическая деформация и при которых наступает разрушение.

Способность металлов и сплавов к сварке.

Свариваемостью металла называют совокупность его технологических свойств, определяющих способность обеспечить при принятом технологическом процессе экономичное, надежное в эксплуатации сварное соединение. Соединение считают качественным или равнопрочным, если его механические свойства близки к характеристикам основного металла и в нем отсутствуют поры, шлаковые включения, раковины. Кроме того, в некоторых случаях соединение должно иметь химические и физические свойства такие же, как свойства основного металла.

Свариваемость – это сложная характеристика, определяемая не только свойствами свариваемого металла, но и выбором технологического процесса, режимом сварки, свойствами применяемых сварочных материалов. Поэтому нет единого вида испытания на свариваемость, а следует применять несколько видов для определения различных характеристик. Число и вид испытаний обусловлен свойствами материала, назначением конструкции и условиями ее работы. Чаще всего признаком плохой свариваемости является наличие в сварном соединении отдельных дефектов. Дефектом является существенная разница свойств основного металла сварного шва и зоны термического влияния. При сварке заготовок из углеродистых и легированных сталей твердость зоны термического влияния возрастает, в то время как пластические свойства значительно снижаются, что повышает хрупкость.

Свариваемость – свойство металла или сочетания металлов образовывать при установленной технологии сварки соединение, отвечающее требованиям, обусловленным конструкцией и эксплуатацией изделия.

Способность металлов и сплавов к обработке резанием.

Обработка резанием является одной из наиболее часто применяемых операций машиностроения, без которой не обходится изготовления ни одной детали. Способность металлов и сплавов к обработке резанием определяется химическим составом и видом термической обработки. Для обработки резанием наиболее часто применяют автоматные стали А12, А20, А40, имеющие повышенное содержание серы (от 0,08 до 0,3 %), фосфора (<=0,05 %) и марганца (от 0,7 до 1,0 %). Сталь 40Г содержит от 1,2 до 1,55 % Mn.

Фосфор, повышая твердость, прочность и охрупчивая сталь, способствует образованию ломкой стружки и получению высокого качества поверхности. Такие стали обладают большой анизотропией механических свойств, склонны к хрупкому разрушению, имеют пониженный предел выносливости. Поэтому сернистые автоматные стали применяют лишь для изготовления неответственных изделий – преимущественно нормалей или метизов.

Производство заготовок. Трубы

Подняться наверх