Читать книгу A Text-book of Entomology - A. S. Packard - Страница 15
d. Mechanical origin of the limbs and of their jointed structure
ОглавлениеWe have already hinted at the mode of origin of the limbs of arthropods. Like the body or trunk, the limbs are chitinous dermo-muscular tubes, with a dense solid cuticle, and internal muscles, and were it not for their division at more or less regular intervals into segments, forming distinct sets of levers, set up by the strains in these tubular supports, there would be no power of varied motion.
Even certain worms, as already stated, have their tentacles and parapodia, or certain appendages of their parapodia, more or less jointed, but there are no indications of claws or of any other hard chitinous armature at the extremity, and the skin is thin and soft.
In the most simple though not the most primitive arthropods, such as the Tardigrades, whose body is not segmented, there are four pairs of short unjointed legs, ending each in two claws, which have probably arisen in response to the stimulus of pushing or dragging efforts.
The legs of Peripatus are unjointed, and have a thin cuticle, but end in a pair of claws, which have evidently arisen as a supporting armature, the result of the act of moving or pulling the body over the uneven surface of the ground.
Fig. 20.—A prothoracic leg of Chironomus larva; and pupa.
Fig. 21.—A, larva of Ephydra californica: a, b, c, pupa.
There is good reason to suppose that such limbs arose from dynamical causes, similar to those exciting the formation of secondary adaptations such as are to be seen in the prop or supporting legs of certain dipterous larvæ, as the single pair of Chironomus (Fig. 20) and Simulium, or the series of unjointed soft tubercles of Ephydra (Fig. 21), etc., which are armed with hooks and claws, and are thus adapted for dragging the insect through or over vegetation or along the ground.
Now by frequent continuous use of such unjointed structures, the cuticle would tend to become hard, owing to the deposit of a greater amount of chitin between the folds of the skin, until finally the body being elongated and homonomously segmented, the movements of walking or running would be regular and even, and we would have homonomously jointed legs like those of the trilobites, or of the most generalized Crustacea and of Myriopoda.
In the most primitive arthropods,—and such we take it were on the whole the trilobites, rather than the Crustacea,—the limbs were of nearly the same shape, being long and slender and evenly jointed from and including the antennæ, to the last pair of limbs of the abdominal region. In these forms there appear to be, so far as we now know, no differentiation into mandibles, maxillæ, maxillipedes, and thoracic legs, or into gonopoda. The same lack of diversity of structure and function of the head-appendages has survived, with little change, in Limulus. In the trilobites (Fig. 1) none of the limbs have yet been found to end in claws or forceps; being in this respect nearly as primitive as in the worms. Secondary adaptations have arisen in Limulus, the cephalic appendages being forcipated, adapted as supports to the body and for pushing it onward through the sand or mud, while the abdominal legs are broad and flat, adapted for swimming and bearing the broad gill-leaves.
It is thus quite evident that we have three stages in the evolution of the arthropodan limb; i.e. 1, the syllid stage, of simple, jointed, soft, yielding appendages not used as true supports (Fig. 19); 2, the trilobite stage, where they are more solid, evenly jointed, but not ending in claws; and by their comparatively great numbers (as in the trilobite, Triarthrus) fully supporting the body on the bottom of the sea. In Limulus they are much fewer in number, thicker, and acting as firm supports, the cephalic limbs of use in creeping, and ending in solid claws. 3, The third stage is the long slender swimming head-appendages of the nauplius stage of Crustacea.
As regards the evolution of limbs of terrestrial arthropods, we have the following stages: 1, the soft unjointed limbs of Tardigrades, ending in two claws, and those of Peripatus, and the pseudo- or prop-legs of certain dipterous larvæ; 2, finally the evolution of the long, solid, jointed limbs of Pauropus and other primitive myriopods, the legs forming solid, firm supports elevating the body, and enabling the insect to drag itself over the ground or to walk or run. When the body is elongated and many-segmented, the legs are necessarily numerous; but when it is short, the legs become few in number, i.e. six, in the hexapodous young of myriopods and in insects, or eight in Arachnida. Whenever the legs are used for walking, i.e. to raise and support the body, they end in a solid point or in a pair of forceps or claws. On the other hand, as in phyllopods, where the legs are used mainly for swimming, they are unarmed and are soft and membranous, or, as in the limbs of the nauplius or zoëa stage of crustaceans, end in a simple soft point, which often bears tactile setæ.
The tarsal joints are more numerous in order to give greater flexibility to the limb in seizing and grasping objects, both to drag the body forwards and to support it.
Unlike those of the Crustacea, the limbs of insects are not primitively biramose, but single, the three-lobed first maxillæ, and secondarily bilobed second maxillæ being the result of adaptation. Embryology on the whole proves the truth of this assumption; the maxillæ of both pairs are at first single buds, afterwards becoming lobed. All the appendages of the body, including the ovipositor or sting, are modified limbs, as shown by their embryological development.
It is noticeable that in the crab, where the body is raised by the limbs above the bottom, it is much shorter and more cephalized than in the shrimps. Also in the simply walking and running spiders, the hind-body is shorter than in scorpions, while in the running and flying insects, such as the Cicindelidæ, and in the swiftly flying flies and bees, there is a tendency to a shortening of the body, especially of the abdomen. The long body of the dragon-fly is an impediment to flight, but compensated for by the action of the large wings.
The arthropodan limb is a compound leverage system. It is, says Graber, a lateral outgrowth of the trunk, which repeats in miniature that of the main trunk, its single series of joints or segments forming a jointed dermo-muscular tube. Yet the lateral appendages of an insect differ from the main trunk in two ways: (1) they taper to the end which bears the two claws, and (2) their segments are in the living animal arranged not in a straight line, but at different angles to each other. The basal joint turning on the trunk acts as the first of a whole series of levers. The second joint, however, is connected with the musculature of the first or basal joint, and thus each succeeding joint is moved on the one preceding. Each lever, from the first to the last, is both an active and a passive instrument. (Graber.)
While, however, as Graber states, the limbs possess their own sets of muscles and can move by the turning of the basal joint, the labor is very much facilitated, as is readily seen, by the trunk, though the latter has to a great extent delegated its locomotive function to the appendages, which again divide its labor among the separate joints.
Graber then calls attention to the analogy of the mechanics of locomotion of insects to those of vertebrates. An insect’s and a vertebrate’s legs are constructed on the same general mechanical principles, the limbs of each forming a series of levers.
Fig. 22.—Diagram of the knee-joint of a vertebrate (A) and an insect’s limb (B): a, upper; b, lower, shank, united at A by a capsular joint, at B by a folding joint; d, extensor or lifting muscle; d1, flexor or lowering muscle of the lower joint. The dotted line indicates in A the contour of the leg.—After Graber.
Fig. 22, A, represents diagrammatically the knee joint of a vertebrate, and B that of an insect; a, the femur or thigh, and b, the tibia or shank. In the vertebrate the internally situated bones are brought into close union and bend by means of a hinge-joint; so also in the chitinous-skinned insect.
The stiff dermal tube of the insect acts as a lever by means of the thin intersegmental membrane (c) pushed in or telescoped in to the thigh joint, a special joint-capsule being superfluous. The muscles are in general the same in both types; they form a circle. In both the shank is extended by the contraction of the upper muscles (d) and is bent by the contraction of the lower (d1). The intersegmental membrane of the insect’s limb is in a degree a two-armed lever, whose pivot (f) lies in the middle. The internal invagination of the intersegmental fold (B, g-h) affords the necessary support to the muscles acting like the tendon in the vertebrate. (Graber.)
Fig. 23.—Primitive band or germ of a Sphinx moth, with the segments indicated, and their rudimentary appendages: c, upper lip; at, antennæ; md, mandibles; mx, mx′, first and second maxillæ; l, l′, l″, legs; al, abdominal legs.—After Kowalevsky.
Graber also calls attention to the fact that this insect limb differs in one important respect from that of land vertebrates. The leverage system in the last is divided at the end into five parallel divisions or digits. In arthropods, on the contrary, all the joints succeed one another in a linear series.
In insects, as well as in other arthropods, modifications of the limbs usually take the form of a simple reduction in the number of segments. Thus while the normal number of tarsal joints is five, we have trimerous and dimerous Coleoptera, and in certain Scarabæidæ the anterior tarsi are lost.
Savigny was the first, in 1816, in his great work, “Théorie des organes de la bouche des Crustacés et des Insectes,” to demonstrate that not only were the buccal appendages of biting insects homologous with those of bugs, moths, flies, etc., but that they were homologous with the thoracic legs, and that thus a unity of structure prevails throughout the appendages of the body of all arthropods. Oken also observed that “the maxillæ are only repeated feet.”
What was modestly put forth as a theory by the French morphologist has been abundantly proved by the embryology of insects of different orders to be a fact. As shown in Fig. 23 the antennæ and buccal appendages arise as paired tubercles exactly as the thoracic legs. The abdominal region also bears similar embryonic or temporary limbs, all of which in those insects without an ovipositor disappear, except the cercopoda, after birth.