Читать книгу Физиология человека. Общая. Спортивная. Возрастная: учебник, 7-е издание - А. С. Солодков - Страница 20

Часть I
Общая физиология
3. Нервная система
3.8. Функции коры больших полушарий

Оглавление

У высших млекопитающих животных и человека ведущий отдел ЦНС – это кора больших полушарий.

3.8.1. Корковые нейроны

Кора представляет собой слой серого вещества толщиной 2–3 мм, содержащий в среднем около 14 млрд нервных клеток. Характерным в ней является обилие межнейронных связей, рост которых продолжается до 18 лет, а в ряде случаев и далее.

Основными типами корковых клеток являются пирамидные и звездчатые нейроны. Звездчатые нейроны связаны с процессами восприятия раздражений и объединением деятельности различных пирамидных нейронов.

Пирамидные нейроны осуществляют эфферентную функцию коры (преимущественно через пирамидный тракт) и внутрикорковые процессы взаимодействия между удаленными друг от друга нейронами. Наиболее крупные пирамидные клетки – гигантские пирамиды Беца – находятся в передней центральной извилине (моторной зоне коры).

Функциональной единицей коры является вертикальная колонка взаимосвязанных нейронов. Вытянутые по вертикали крупные пирамидные клетки с расположенными над ними и под ними нейронами образуют функциональные объединения нейронов. Все нейроны вертикальной колонки отвечают на одно и то же афферентное раздражение (от одного и того же рецептора) одинаковой реакцией и совместно формируют эфферентные ответы пирамидных нейронов. По мере надобности вертикальные колонки могут объединяться в более крупные образования, обеспечивая сложные реакции.

3.8.2. Функциональное значение различных корковых полей

По особенностям строения и функциональному значению отдельных корковых участков вся кора подразделяется на три основные группы полей – первичные, вторичные и третичные (рис. 7).

Первичные поля связаны с органами чувств и органами движения на периферии. Они обеспечивают возникновение ощущений. К ним относятся, например, поле болевой и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и моторное поле в передней центральной извилине. В первичных полях находятся высокоспециализированные клетки-определители, или детекторы, избирательно реагирующие только на определенные раздражения. Например, в зрительной коре имеются нейроны-детекторы, возбуждающиеся только при включении или при выключении света, чувствительные лишь к определенной его интенсивности, к конкретным интервалам светового воздействия, к определенной длине волны и т. д. При разрушении первичных полей коры возникают так называемые корковая слепота, корковая глухота и т. п.


Рис. 7. Первичные, вторичные и третичные поля коры больших полушарий. А: крупные точки – первичные поля, средние – вторичные поля мелкие – третичные поля; Б: первичные (проекционные) поля коры больших полушарий


Вторичные поля расположены рядом с первичными. В них происходит осмысливание и узнавание звуковых, световых и других сигналов, возникают сложные формы обобщенного восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит значения.

Третичные поля развиты практически только у человека. Это ассоциативные области коры, обеспечивающие высшие формы анализа и синтеза и формирующие целенаправленную поведенческую деятельность человека. Третичные поля находятся: в задней половине коры – между теменными, затылочными и височными областями; в передней половине – в передних частях лобных областей. Их роль особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей и раньше других деградируют при старении.

Функцией задних третичных полей (главным образом, нижнетеменных областей коры) является прием, переработка и хранение информации. Они формируют представление о схеме тела и схеме пространства, обеспечивая пространственную ориентацию движений. Передние третичные поля (переднелобные области) выполняют общую регуляцию сложных форм поведения человека, формируя намерения и планы, программы произвольных движений и контроль за их выполнением. Развитие третичных полей у человека связывают с функцией речи. Мышление (внутренняя речь) возможно только при совместной деятельности различных сенсорных систем, объединение информации от которых происходит в третичных полях. При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысленные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

3.8.3. Парная деятельность и доминирование полушарий

Обработка информации осуществляется в результате парной деятельности обоих полушарий головного мозга. Однако, как правило, одно из полушарий является ведущим – доминантным. У большинства людей с ведущей правой рукой (правшей) доминантным является левое полушарие, а соподчиненным (субдоминантным) – правое полушарие.

Левое полушарие по сравнению с правым имеет более тонкое нейронное строение, большее богатство взаимосвязей нейронов, более концентрированное представительство функций и лучшие условия кровоснабжения. В левом доминантном полушарии находится моторный центр речи (центр Брока), обеспечивающий речевую деятельность, и сенсорный центр речи, осуществляющий понимание слов. Левое полушарие специализировано на тонком сенсомоторном контроле за движениями рук.

У человека различают три формы функциональной асимметрии: моторную, сенсорную и психическую. Как правило, у человека имеются ведущая рука, нога, глаз и ухо. Однако проблема функциональной асимметрии довольно сложна. Например, у человека-правши может быть ведущим левый глаз или левое ухо, сигналы от которых являются главенствующими. При этом в каждом полушарии могут быть представлены функции не только противоположной, но и одноименной стороны тела. В результате этого обеспечивается возможность замещения одного полушария другим в случае его повреждения, а также создается структурная основа для переменного доминирования полушарий при управлении движениями.

Психическая асимметрия проявляется в виде определенной специализации полушарий. Для левого полушария характерны аналитические процессы, последовательная обработка информации, в том числе с помощью речи, абстрактное мышление, оценка временных отношений, предвосхищение будущих событий, успешное решение вербально-логических задач. В правом полушарии информация обрабатывается целостно, синтетически (без расчленения на детали), с учетом прошлого опыта и без участия речи, преобладает предметное мышление. Эти особенности позволяют связывать с правым полушарием восприятие пространственных признаков и решение зрительно-пространственных задач. Функции правого полушария связаны с прошедшим временем, а левого – с будущим.

3.8.4. Электрическая активность коры больших полушарий

Изменения функционального состояния коры отражаются в записи ее электрической активности – электроэнцефалограммы (ЭЭГ). Современные электроэнцефалографы усиливают потенциалы мозга в 2–3 млн раз и дают возможность исследовать ЭЭГ от многих точек коры одновременно, т. е. изучать системные процессы. Регистрация ЭЭГ производится в виде чернильной записи на бумаге, а также в виде целостной картины на схеме поверхности мозга, т. е. карты мозга (метод картирования) на экране мониторов современных компьютерных систем (рис. 8).


Рис. 8. Картирование мозга: многоканальная регистрация электроэнцефалограммы (ЭЭГ) человека на экране монитора и отражение возбужденных (светлые зоны) и заторможенных (темные зоны) участков коры


Рис. 9. ЭЭГ затылочной (а – д) и моторной (е – з) областей коры больших полушарий человека при различных состояниях и во время мышечной работы: а – активное состояние, глаза открыты (бета-ритм); б – покой, глаза закрыты (альфа-ритм); в – дремота (тета-ритм); г – засыпание (медленные волны); д – глубокий сон (дельта-ритм); е – непривычная или тяжелая работа – асинхронная частая активность (явление десинхронизиции); ж – циклическая работа – медленные потенциалы в темпе движений («меченые ритмы» ЭЭГ); з – выполнение освоенного движения – появление альфа-ритма


Различают определенные диапазоны частот, называемые ритмами ЭЭГ (рис. 9): в состоянии относительного покоя чаще всего регистрируется альфа-ритм (8–13 колебаний в 1 с); в состоянии активного внимания – бета-ритм (14 колебаний в 1 с и выше); при засыпании, некоторых эмоциональных состояниях – тета-ритм (4–7 колебаний в 1 с); при глубоком сне, потере сознания, наркозе – дельта-ритм (1–3 колебания в 1 с).

В ЭЭГ отражаются особенности взаимодействия корковых нейронов при умственной и физической работе (Ливанов М. Н., 1972). Отсутствие налаженной координации при выполнении непривычной или тяжелой работы приводит к так называемой десинхронизации ЭЭГ – быстрой асинхронной активности. По мере формирования двигательного навыка в ЭЭГ возникают явления синхронизации ЭЭГ – усиления взаимосвязанности (синхронности и синфазности) электрической активности различных областей коры, участвующих в управлении движениями. При циклической работе появляются медленные потенциалы в темпе выполняемого, воображаемого или предстоящего движения – «меченые ритмы» (Сологуб Е. Б., 1973).

Помимо фоновой активности в ЭЭГ выделяют отдельные потенциалы, связанные с какими-либо событиями: вызванные потенциалы, возникающие в ответ на внешние раздражения (слуховые, зрительные и др.); потенциалы, отражающие мозговые процессы при подготовке, осуществлении и окончании отдельных двигательных актов – это «волна ожидания», или условная негативная волна (Уолтер Г., 1966), премоторные, моторные и финальные потенциалы и др. Кроме того, регистрируют различные сверхмедленные колебания длительностью от нескольких секунд до десятков минут (в частности, так называемые «омега-потенциалы» и др.), которые отражают биохимические процессы регуляции функций и психической деятельности.

Физиология человека. Общая. Спортивная. Возрастная: учебник, 7-е издание

Подняться наверх