Читать книгу Verification of M.Faraday's hypothesis on the gravitational power lines - А. Т. Серков - Страница 12
Chapter 2. Gravimagnetic braking of celestial bodies
2. Gravimagnetic power
ОглавлениеContinuing the analogy with electrodynamics, braking force when interacting gravitating bodies can be expressed by the formula similar to the known electrodynamics equation of the Lorentz force:
fgm = (v/C)2(GMm/r2)Sin α, (1)
Where f is the force gravimagnetic interaction of bodies with masses M and m, remote distance r squared and moving relative to each other with velocity v in the direction at an angle α to the intensity vector gravimagnetic field, G is a gravitational constant and C is a constant with the dimension of velocity cm/sec. This will Illustrate scheme, see 1 a and b.
Fig.1. Scheme of occurrence gravimagnetic forces: (a) a body with mass m, moving with velocity v in a gravitational field G, generates gravimagnetic field intensity H and the force f; (b) gravimagnetic force f (perpendicular to the plane of the drawing up) has a maximum value when α2 = 90° and sinα = 1, the reduction of the angle α leads to a decrease in f, if α = 0 the force f is also zero.
Body m moves in a gravitational field G with velocity v at right angles to the power lines, Fig. 1a. The movement body m causes gravimagnetic field intensity H, the vector of which is directed normal to the vector of gravitational field strength G and the direction of body motion v. In this case, the moving body m will act normal to the direction of motion and the vector gravimagnetic tension braking force f. The magnitude of this force depends on the angle between the motion direction and the intensity vector gravimagnetic field H, see Fig.1 b. At α = 90° Sinα = 1, and the force f has a maximum value. When decreasing α below 90° decreases f and when α = 0 the braking gravimagnetic force disappears. The body moves in gravimagnetic field without resistance and energy consumption.
To confirm advanced assumptions gravimagnetic braking bodies consider for example, at motion of satellites of the moon.