Heat Transfer 1

Heat Transfer 1
Авторы книги: id книги: 2020662     Оценка: 0.0     Голосов: 0     Отзывы, комментарии: 0 15938,7 руб.     (155,38$) Читать книгу Купить и скачать книгу Купить бумажную книгу Электронная книга Жанр: Отраслевые издания Правообладатель и/или издательство: John Wiley & Sons Limited Дата добавления в каталог КнигаЛит: ISBN: 9781119818229 Скачать фрагмент в формате   fb2   fb2.zip Возрастное ограничение: 0+ Оглавление Отрывок из книги

Реклама. ООО «ЛитРес», ИНН: 7719571260.

Описание книги

Heat is a branch of thermodynamics that occupies a unique position due to its involvement in the field of practice. Being linked to the management, transport and exchange of energy in thermal form, it impacts all aspects of human life and activity. <p>Heat transfers are, by nature, classified as conduction, convection (which inserts conduction into fluid mechanics) and radiation. The importance of these three transfer methods has resulted – justifiably – in a separate volume being afforded to each of them. This first volume is dedicated to thermal conduction, and, importantly, assumes an analytical approach to the problems presented, and recalls the fundamentals. Heat Transfer 1 combines a basic approach with a deeper understanding of the discipline and will therefore appeal to a wide audience, from technician to engineer, from doctoral student to teacher-researcher.

Оглавление

Abdelkhalak El Hami. Heat Transfer 1

Contents

List of Illustrations

Guide

Pages

Heat Transfer 1. Conduction

Preface

Introduction. I.1. Preamble

I.2. Introduction

I.3. Interlude

1. The Problem of Thermal Conduction: General Comments. 1.1. The fundamental problem of thermal conduction

1.2. Definitions. 1.2.1. Temperature, isothermal surface and gradient

1.2.2. Flow and density of flow

1.3. Relation to thermodynamics

1.3.1. Calorimetry

1.3.2. The first principle

1.3.3. The second principle

2. The Physics of Conduction. 2.1. Introduction

2.2. Fourier’s law. 2.2.1. Experiment

2.2.2. Temperature profile

2.2.3. General expression of the Fourier law

2.3. Heat equation. 2.3.1. General problem

2.3.2. Mono-dimensional plane problem. 2.3.2.1. The terms of conduction per m2 of wall

2.3.2.2. Balance of conduction terms

2.3.2.3. Variation of the temperature with time

2.3.3. Case of the axisymmetric system

2.3.4. Case of the spherical system

2.4. Resolution of a problem

2.5. Examples of application

2.5.1. Problems involving spherical symmetry

3. Conduction in a Stationary Regime. 3.1. Thermal resistance

3.1.1. Thermal resistance: plane geometry

3.1.1.1. Resistance per unit of surface area (per m2)

3.1.1.2. Overall resistance

3.1.1.3. Practical application of thermal resistance

3.1.1.4. Electrical analogy

3.1.2. Thermal resistance: axisymmetric geometry. The case of a cylindrical wall

3.1.3. Thermal resistance to convection

3.1.3.1. Resistance to convection in plane geometry

3.1.3.2. Resistance to convection in axisymmetric geometry

3.1.4. Critical radius

3.2. Examples of the application of thermal resistance in plane geometry

3.3. Examples of the application of the thermal resistance in cylindrical geometry

3.4. Problem of the critical diameter

3.5. Problem with the heat balance

4. Quasi-stationary Model

4.1. We can perform a simplified calculation, adopting the following hypotheses

4.2. Method: instantaneous thermal balance

4.3. Resolution

4.4. Applications for plane systems

4.5. Applications for axisymmetric systems

5. Non-stationary Conduction

5.1. Single-dimensional problem

5.1.1. Temperature imposed at the interface at instant t = 0

5.2. Non-stationary conduction with constant flow density

5.3. Temperature imposed on the wall: sinusoidal variation

5.4. Problem with two walls stuck together

5.5. Application examples. 5.5.1. Simple applications

5.5.2. Some scenes from daily life

6. Fin Theory: Notions and Examples. 6.1. Notions regarding the theory of fins. 6.1.1. Principle of fins

6.1.2. Elementary fin theory

6.1.3. Parallelepiped fin. 6.1.3.1. Solution

6.1.3.2. Problem of an infinite fin

6.1.3.3. Problem of a fin of finite length

6.2. Examples of application

Appendix 1. Heat Equation of a Three-dimensional System

A1.1. Reminder: writing the Fourier law

A1.2. Heat equation

Appendix 2. Heat Equation: Writing in the Main Coordinate Systems

A2.1. The elementary volume

A2.2. Problem with variable physical properties

A2.3. Problem with constant physical properties. A2.3.1. The problem can often be simplified

A2.3.2. This Laplace operator is written, in each of the coordinate systems

A2.3.3. Hence the expressions for the heat equation in a time-dependent regime

A2.4. Time-independent regime

A2.4.1. In the case of variable physical properties

A2.4.2. In the case of constant physical properties

A2.5. Writing the Fourier law. How can the expression for the gradient be found?

Appendix 3. One-dimensional Heat Equation

A3.1. Case of an axisymmetric system

A3.2. Case of a spherical system

A3.2.1. The flow through a sphere of radius r

Appendix 4. Conduction of the Heat in a Non-stationary Regime: Solutions to Classic Problems. Hypotheses:

Appendix 5. Table of erf (x), erfc(x) and ierfc(x) Functions

Appendix 6. Complementary Information Regarding Fins

A6.1. Rectangular wings. Solutions to classic problems

Case 1: Infinitely long fin

Case 2: Fin of length L. Zero flow at the extremity

Case 3: Wing of length L. Convection coefficient h at the end

Appendix 7. The Laplace Transform

A7.1. Definition

A7.2. Derivatives and integrals

A7.3. We will give two examples. A7.3.1. Transform of the Heaviside step function

A7.3.2. Transform of the erfc function

A7.4. Resolution of a problem of single-dimensional non-stationary transfer

Appendix 8. Reminders Regarding Hyperbolic Functions

References

Index. C, E

F, G, H

I, R, T

WILEY END USER LICENSE AGREEMENT

Отрывок из книги

Mathematical and Mechanical Engineering Set

.....

Let us entrust Ludwig Boltzmann to direct the film. Our B movie heroes are getting agitated, delivering blows to one another. Each one of them has moderate kinetic energy, distributed heterogeneously among them in the room. For some reason, they get involved in a general brawl. Their average kinetic energy becomes much greater.

In everyday language, we would say that things are hotting up.

.....

Добавление нового отзыва

Комментарий Поле, отмеченное звёздочкой  — обязательно к заполнению

Отзывы и комментарии читателей

Нет рецензий. Будьте первым, кто напишет рецензию на книгу Heat Transfer 1
Подняться наверх