Читать книгу Хамса. Пятерица - Ахун Андижани - Страница 14

Аксиома существования
Электронные оболочки

Оглавление

Удерживаемые атомным ядром электроны находятся в различных состояниях – на определённых «орбитах»-оболочках. На каждой оболочке может находиться ограниченное число электронов. Сами оболочки-уровни строго определяются атомным ядром и тем обстоятельством, что электрон, как и устойчивая волна, может существовать в ограниченном пространстве только в том случае, когда в этом пространстве укладывается целое количество волн. На каждой оболочке при соответствующем атомном ядре энергия электрона строго определена.

Отдельный атом находится в наиболее устойчивом или, как говорят физики, в основном состоянии, когда электронами заполнены всевозможные (при данном количестве электронов) состоянии с наименьшей энергией.

В определённых условиях – при достаточно сильном воздействии окружающей среды (подводе энергии из окружающей среды) – атом выводится из основного состояния, но быстро возвращается в основное состояние, испустив лишнюю энергию в виде γ-кванта. Энергия γ-кванта, или фотона, при этом соответствует разности уровня энергий покинутого состояния приобретённого.

При очень большом воздействии окружающей среды какой-либо электрон (находившийся в наименее устойчивом состоянии с относительно большим уровнем энергии) может получить энергию, позволяющую ему покинуть атом. Минимальная такая энергия называется ионизационным потенциалом рассматриваемого атома. На фигуре 5 приведены уровни энергий отдельного атома водорода. В газообразном водороде при комнатной температуре практически все атомы находятся в основном состоянии, а электроны находятся на оболочке с уровнем энергии – 13,6 эв. Если этот газ нагреть достаточно сильно, то некоторые атомы, сталкиваясь между собой, уже смогут приобрести кинетическую энергию, превышающую 10,2 эв. Электрон перейдёт с низшего уровня на более высокие. Наличие вакантного места на оболочке первого уровня заставит электрон, испустив соответствующий фотон или фотоны, вернуться в прежнее состояние.


Фиг. 5


При переходе с высокого уровня на первый в атоме водорода излучается ультрафиолетовый свет, при переходе с высокого уровня на второй – излучается фотон видимого спектра.

Если при столкновении кинетическая энергия превысит 13,6 эв., то электрон может получить энергию, позволяющую ему покинуть протон – ядро водорода, то есть 13,6 эв., – ионизационный потенциал электрона.

Как было сказано выше, количество электронов, способных находиться на определённой оболочке, ограничено.

Количество электронов на внешней оболочке атома, находящегося в основном состоянии (и соответствующее количество электронов, недостающих до полной заполненности внешней оболочки) определяет основные химические свойства атомов (валентность, ионизационные потенциалы и т. д.).

Этим обусловлена периодичность свойств атомов, при возрастании атомного номера определяющая таблицу Менделеева. Замыкают каждый период атомы с полностью укомплектованными оболочками – инертные газы.

Чтобы вывести стабильный, отдельный атом из устойчивого состояния, необходимо внешнее достаточно мощное воздействие, имеющее энергию не меньше, чем энергия ионизации этого атома. На фигуре 6 приведён график зависимости энергии ионизации от атомного номера.


Фиг. 6. Ионизационные потенциалы атомов


На графике видно, что с увеличением номера периода средняя энергия ионизации атомов периода уменьшается. То есть с увеличением номера периода устойчивость атомов – необходимая энергия воздействия для ионизации – сравнительно падает. Напомним, что атомное ядро при увеличении Z также становится менее устойчивым. Этими обстоятельствами предопределяется сравнительно большая распространённость «лёгких» атомов как на Земле, так и в исследованной Вселенной.

Хамса. Пятерица

Подняться наверх