Читать книгу Geology For Dummies - Alecia M. Spooner - Страница 47
Reading the rock layers: Steno’s stratigraphy
ОглавлениеIn the mid-seventeenth century, Nicholas Steno, a Danish physician, made great contributions to geology and especially paleontology: the study of fossil life. When Steno began his observations, only a few other scientists had proposed, tested, and attempted to prove that fossils found in rocks were the remains of once-living organisms. Steno advanced these ideas through observations and the study of rocks. His work led him to other questions, such as how could any solid object (a rock, mineral, or fossil) become trapped within another solid object, such as a rock?
Steno is considered the father of modern stratigraphy, which is the study of layers of rock. He described four principles of stratigraphy that still hold true today:
Principle of superposition: States that in an uninterrupted sequence of sedimentary rocks (those composed of pieces of other rocks; see Chapter 7), the rock layers below are older than the rock layers above (as long as they have not been deformed, which I describe in Chapter 9). In Figure 3-1, the principle of superposition indicates that layer A is older than layer B, C, or E.
Principle of original horizontality: States that sediments forming sedimentary rocks are usually laid down in a horizontal position (due to gravity). Therefore, rock layers that appear vertical have been moved from their original, horizontal position by some natural force (such as an earthquake).
Principle of lateral continuity: States that when sediments are laid down, creating sedimentary rocks, they spread out until they reach some other object that confines them. This principle is illustrated when you fill your bathtub with water. The water spreads to fill all the space, confined only by the edges of the tub. Pour that same amount of water on the bathroom floor, and it spreads out until it hits the bathroom walls. Sedimentary rocks, like water, continue laterally until they are stopped by some other object.
Principle of cross-cutting relationships: States that where one type of rock cuts across or through another type of rock, the rock being cut is older and the rock cutting through is younger. After all, a rock must already exist in order to be cut through by another rock. This principle is illustrated in Figure 3-1 where rock unit D is younger than the rocks A, B, and C that it cuts through.
FIGURE 3-1: In this sketch of rock layers, the oldest is A, and the youngest is E.