Читать книгу Перспективы отбора - Александр Марков, Александр Владимирович Марков - Страница 8
Исследование № 4
Ранние этапы адаптации предсказуемы, поздние – случайны
ОглавлениеЭксперимент Ленски показал, что в бесполых популяциях даже в неизменных условиях идет непрерывный рост приспособленности. Происходит это за счет накопления и закрепления полезных мутаций. Хорошо бы разобраться подробнее в этом процессе: что за мутации, как и в какой последовательности они распространяются в популяции. Эту непростую задачу удалось решить с помощью новой методики “генетического штрихкодирования”. Применив ее, американские ученые смогли в небывалых подробностях изучить процесс накопления полезных мутаций в большой бесполой популяции дрожжей при адаптации к новой среде. Как выяснилось, на начальных этапах общий рост приспособленности популяции идет за счет высоковероятных мутаций со слабым положительным эффектом, которые возникают независимо у множества особей. На этой стадии процесс адаптации предсказуем: его можно описать простыми формулами. В дальнейшем роль случайности возрастает, потому что на первый план выходят маловероятные мутации с сильным полезным эффектом. Кроме того, исследование наглядно показало, что темп появления полезных мутаций может быть весьма высоким.
В популяциях, насчитывающих миллионы особей, в каждом поколении возникает множество новых мутаций – и вредных, и полезных, и нейтральных (напомним, что категория мутации определяется ее влиянием на приспособленность, то есть на эффективность передачи особью своих генов следующим поколениям). Все эти мутации вносят вклад в среднюю приспособленность особей, от которой зависит скорость роста численности популяции. Возникновение новых мутаций и изменение частоты их встречаемости под действием отбора и генетического дрейфа – самые фундаментальные эволюционные процессы. Нельзя понять эволюцию, не изучив их во всех подробностях.
Но как уследить за тысячами мутаций, происходящих у миллионов особей? Секвенировать целиком миллионы геномов – неподъемная задача даже при современном уровне развития биотехнологий. Если же применять выборочное секвенирование, то в поле зрения исследователей попадут только те мутации, которые достигли высокой частоты встречаемости (например, как в Исследовании № 3). Картина получится весьма неполной. Ведь многие возникающие полезные мутации, вероятно, никогда не становятся массовыми, однако свой вклад в общую приспособленность тем не менее вносят.
Альтернативный подход состоит в том, чтобы пометить отдельные клоны (клетки, произошедшие от одной и той же родительской клетки) наследуемой генетической меткой, а потом следить, как меняется численность каждого из них. Если численность какого-то клона вдруг начала экспоненциально расти, в то время как число всех особей популяции остается постоянным, значит, у одного из представителей этого клона возникла полезная мутация. При этом скорость роста является мерой полезности мутации. Например, если рост численности клона описывается уравнением N = N0 × (1 + 0,05)t, где время t измеряется в поколениях, значит, мутация повысила приспособленность на 5 % (в таких случаях говорят, что полезность мутации, обозначаемая буквой s, равна 0,05).
Именно такое маркирование и осуществили американские биологи, продемонстрировав настоящий прорыв в технике наблюдений за эволюцией многомиллионных популяций (Levy et al., 2015). Ученые работали с двумя бесполыми популяциями дрожжей (их искусственно лишили способности к половому размножению, так что они размножались только почкованием) численностью по 108 клеток. Популяции были произведены от одной-единственной предковой клетки, то есть изначально геномы всех дрожжей были одинаковыми. В каждой популяции были помечены индивидуальными генетическими метками примерно по 500 000 клонов. Как это удалось сделать? Сначала изготовили большую коллекцию кольцевых молекул ДНК – плазмид, – содержащих случайные двадцатинуклеотидные последовательности (генетический “штрихкод”). Эти плазмиды внедрялись в дрожжевые клетки, геномы которых были предварительно модифицированы таким образом, чтобы плазмиды встраивались в строго определенное место генома при помощи особого фермента – Cre-рекомбиназы. В итоге удалось получить две популяции численностью по 108 клеток, в которых каждая клетка принадлежала к одному из полумиллиона помеченных клонов.
Затем в течение 168 поколений обе популяции адаптировались к “голодной” среде, где размножение ограничивалось количеством глюкозы (как и в эксперименте Ленски). Численность каждого клона отслеживалась путем массового секвенирования небольшого фрагмента генома, содержащего “штрихкод”. Секвенировать приходилось лишь 0,002 % генома, что позволило резко увеличить разрешающую способность метода по сравнению с полногеномным секвенированием. В поле зрения исследователей попали даже те мутации, частота встречаемости которых в популяции никогда не превышала 10–5, тогда как секвенирование полных геномов позволило бы отследить лишь клоны с относительной численностью 10–2 и выше. В результате вместо 25 000 зарегистрированных мутаций исследователи сумели бы обнаружить лишь около 15 (для сравнения вспомним, что в Исследовании № 3 удалось проследить судьбу только тех мутаций, чья частота встречаемости достигала 10 %, то есть 10–1, или более).
Впрочем, даже зная численность каждого клона в разные моменты времени, определить, в каком из них возникла полезная мутация, – не такая простая задача (рис. 4.1). Каждая мутация возникает сначала у одной особи. Пока число потомков удачного мутанта невелико, динамика их численности определяется не столько приспособленностью (и следовательно, отбором), сколько случайными колебаниями (дрейфом). Большая часть вновь возникающих полезных мутаций теряется из-за дрейфа: потомки удачного мутанта просто не успевают достичь такой численности, при которой отбор “заметит” их полезное свойство и начнет его поддерживать. Мутация становится заметна для отбора (и выходит из-под власти дрейфа) лишь по достижении численности мутантов, сопоставимой с 1/s