Читать книгу Эволюция. Классические идеи в свете новых открытий - Александр Марков, Александр Владимирович Марков - Страница 5
Глава 1. Наследственность: куда катится мир?
Отбор – игра по правилам
ОглавлениеМетодом случайного поиска (случайных блужданий) найти в необозримой «белковой вселенной» одну конкретную точку, соответствующую оптимальному выполнению белком данной функции, совершенно нереально. К счастью, такие оптимумы, как правило, – не точки, а обширные области. А главное, поиск оптимума в ходе эволюции осуществляется вовсе не методом случайных блужданий. Он идет методом направленного отбора. Направленность возникает благодаря тому, что случайные отклонения в «неправильную» сторону, ухудшающие рабочие качества белка, отбраковываются, отменяются и забываются, тогда как случайные отклонения в «правильную» сторону запоминаются и сохраняются.
Если исходная последовательность уже находится у подножия некоей возвышенности на ландшафте приспособленности – там, где уже есть хотя бы небольшой наклон (это значит, что белок хотя бы в минимальной степени, но уже выполняет какую-то функцию), отбор загоняет последовательность на вершину горы с поразительной эффективностью. Это можно показать с помощью компьютерной программы, впервые описанной Ричардом Докинзом в книге «Слепой часовщик». Пусть в роли исходной последовательности выступает произвольный набор букв, например, такой:
weiusdhsdklj dfg dfgghkjhjh qnlsvtnxuvsf qw kjhgj jfdjkfflmc
Программа размножит эту последовательность в тысяче экземпляров, внося в нее случайные мутации с заданной частотой. Например, пусть каждая буква в каждой копии с вероятностью 0,05 мутирует, т. е. заменяется другой случайной буквой. В результате каждая двадцатая (в среднем!) буква у каждого потомка будет отличаться от родительской. Зададим оптимум, к которому нужно стремиться, – некую осмысленную фразу. Попробуем сначала прийти к оптимуму без помощи отбора, методом случайных блужданий. Для этого из 1000 потомков выберем одного наугад и снова размножим в 1000 экземпляров с мутациями. И еще раз, и еще.
Вот что у нас получилось. Справа указаны номер поколения и степень отличия от целевой последовательности, т. е. удаленность от оптимума:
weiusdhsdklj efg dfgghkjhjh qnlsvtnxuvsfuqt kjhgj jfdjkfflmc 1 1101
weiusdhshklj efg dfgghkchjh qnlsvtxxuvmfuqt kjhgj jfdjkfflmc 2 1102
weiusdhshqxj efg dfgghkchjh qnudvtxxuvnfuqt kjhgj jfdjkfflmc 3 1073
weiusdhshqxj efg dfgghkchjh pnudvnxxuvnfuqt kjhgj jfdjkfflmc 4 1068
weiuydhshqxjmefg dfgghgchjh pnudvnxxuvnfuqt kjhgj jfdjkfflmc 5 995
…
miokytvohujkuefhjefghhgcajtrjnfdqnxxutdzuftfihfgz ufdjkfszyc 21 1179
miokytvohuwtuefhjefghhgcajyrjnfdqnxxutdzuftfiufgz ufdjkfszyc 22 1173
…
jzvsztfxtuggublusgidhpgxauyranrwqbwsjtdoxykfinfzvyufdoluszyh 51 1152
jzvsztfxtuggublusgidhpgxauyranrwqjwsjtdoxykfinfzvyufdoluszyh 52 1144
…
pkvlrqsxoqrewqoidyofypjlsjvwcjxdjlkhbzdyonhdeyuydlusjzbmeeiu 99 1078
pkvlrqsxoqoewqoidyofysjlsjvwcjxdjlkhbzdyonhdeyuydlusjubmeeiu 100 1073
Бесполезно! За 100 поколений – ни малейшего прогресса, никакого приближения к оптимуму. Фраза осталась такой же бессмысленной, какой и была. Случайное блуждание в пространстве последовательностей, которое мы сейчас смоделировали, практически не дает шанса найти конкретную точку в белковой вселенной.
Нет, конечно, будь у нас бесконечный запас времени, когда-нибудь мы все же наткнулись бы на оптимум. Когда, вот в чем вопрос. Мы использовали 26 букв латинского алфавита и пробел, итого 27 знаков. Длина фразы – 60 знаков. Оптимум – это одна комбинация из 2760 (~7,6×1085) возможных. Вариантов больше, чем атомов во Вселенной. Примерно столько поколений нам и потребуется, чтобы случайно наткнуться на нужную точку.
К такому способу поиска вполне приложимы известные рассуждения об урагане, пролетевшем над свалкой, который ни за что не соберет из мусора «боинг-747», и об обезьяне, которая, бессмысленно стуча по клавиатуре, никогда не напишет «Войну и мир». Таким способом – и впрямь не напишет. К счастью для нас, эволюция идет вовсе не этим способом. Или, если быть совсем уж точными, не только этим способом.
Мы все-таки не зря моделировали случайные блуждания – у них тоже есть аналог среди эволюционных процессов. Именно так идет нейтральная эволюция. Так меняются последовательности (аминокислотные или нуклеотидные), от которых приспособленность организма не зависит и которые поэтому не находятся под действием отбора.
Между прочим, хоть блуждания и случайные, некие закономерности можно заметить и в этом случае. Обратите внимание, что эволюционирующая последовательность постепенно становилась все менее похожа на исходную. Фраза из поколения № 1 отличается от исходной только тремя знаками, в поколении № 2 мы видим уже семь отличий, в поколении № 4–13, в пятом поколении – 16 отличий. К 50-му поколению никакого сходства с исходной последовательностью не осталось. Но в течение первых 20–25 поколений сходство сохранялось, постоянно уменьшаясь. Поэтому мы могли по степени этого сходства примерно определить номер поколения, к которому принадлежит данная фраза. Мы могли, сравнив данную фразу с исходной и зная скорость мутирования, примерно оценить, сколько поколений разделяет эти две фразы! На этом принципе основан замечательный метод молекулярных часов, с которым мы познакомимся в следующем разделе. А пока вернемся к отбору.
Изменим немного нашу программу. Пусть теперь для размножения выбирается не любая из 1000 последовательностей наугад, а лучшая – наиболее похожая на «оптимальную». Все прочее оставим как было. Запускаем программу и получаем следующее:
wbiusdhsdkljvdfgfdbgghkjhjh qnlsvtnxuvsf qw kjhgjajfdjkfflmc 1 992
jfiusdhsd ljvqfgfdbggbkjhjh qnlsvtnxuvsfyqw kjhgjajfdjkfflmc 2 844
jfiusdhsd ljvqfgfdbggnkjhjh qnl vtnxuvsfyqw djhgjajfdjkfflmc 3 756
jfiusdhsd ljvqqgfdbggnkjhjh qnj vtnx vsfyqw djhgjajfdjkfflmc 4 684
jfiusdhsd ljrr gfdbggnkjhme qnj vtnx vsfyqw djhgjajfdjkfflmc 5 594
…
tdkfdrhsm vjlr nfdbgmu jhoe anw crbm hs ygj vqptjam vjjzbpnc 21 113
tdkfdrhsm vjlr nfdbgku jhoe anw crbm hs ygj vqpteam vjjvbprc 22 104
…
tekfdrhom vjll rfaeiky jhoe any fobm hm tgd oqptehm vmjvepse 41 37
tekfdriom vjll rfaeiky fhoe any fobm hm tgd oqptehm vmjvepse 42 32
…
tekectiom will readily fime any gobl hn thd oroteim universe 61 10
tekectiom will readily fime any gobl in thd oroteim universe 62 9
…
selection will readily fime any goal in the orotein universe 73 3
selection will readily fimd any goal in the orotein universe 74 2
…
selection will readily fimd any goal in the protein universe 87 1
selection will readily fimd any goal in the protein universe 88 1
selection will readily find any goal in the protein universe 89 0
selection will readily find any goal in the protein universe 90 0
Ну вот, совсем другое дело! Под действием отбора наша последовательность уверенно двигалась к оптимуму – взбиралась на пик ландшафта приспособленности – и достигла его в 89-м поколении, с чем мы ее и поздравляем.
Главный урок из этих упражнений состоит в том, что эволюция под действием отбора совсем не похожа на попытки напечатать «Войну и мир», случайным образом нажимая на клавиши. Отбор – мощная организующая сила, которая придает эволюции направленность, формируя из хаоса случайных мутаций закономерный, упорядоченный результат.
Но позвольте, не отступили ли мы от реальности, произвольно задав оптимальную последовательность – фразу, к которой нужно было стремиться? Не похоже ли это на «божественное вмешательство»?
Вовсе нет. Для любой полезной функции, выполняемой белком при данных условиях (температуре, составе среды и т. д.) действительно существует одна или несколько оптимальных аминокислотных последовательностей, которые справятся с этой функцией лучше всего. Возможно, реального белка с такой последовательностью еще нет в природе – эволюция не успела его создать, – но ведь идеальная последовательность все равно существует, подобно тому как потенциально существовал химический элемент углерод со всеми своими свойствами еще до того, как первые атомы углерода начали синтезироваться в недрах звезд, вспыхнувших в молодой Вселенной. Отбор будет двигать эволюционирующую последовательность к этому идеалу независимо от того, есть уже на свете такие белки или им еще только предстоит появиться.
В чем мы действительно погрешили против истины, так это в том, что в неявном виде ввели в модель несколько допущений о форме ландшафта приспособленности, сильно упрощающих реальность. Мы допустили, что ландшафт – это одна большая гора с гладкими склонами и единственной вершиной, причем любая случайная последовательность, с которой начинается эволюция, уже находится на склоне этой горы, так что движение «вверх» (к идеалу) повышает ее приспособленность. Нахождение на склоне означает, что исходная последовательность хоть чуть-чуть, хоть совсем плохо, но все-таки уже справляется с данной функцией.
Рассмотренная модель справедлива лишь для ситуации, когда отбору уже есть за что «зацепиться», когда эволюционирующая последовательность уже на что-то годна.
Как удается эволюционирущим последовательностям переходить с одной горы на другую и со склона на склон? Иными словами, как белок, уже приспособившийся выполнять какую-то функцию – начавший взбираться по склону одной из гор, – может приобрести другую функцию, т. е. перейти на другую гору? Как он преодолеет разделяющую их низменность?
Это важный вопрос, и мы к нему еще вернемся. Ну а пока ограничимся несколькими замечаниями.
Во-первых, действительно, чем выше белок забрался по одному склону, тем меньше у него шансов перейти на другой. Глубокие низины между горными массивами, соответствующими основным группам белковых функций – так называемым надсемействам белков, – как правило, непроходимы. Крайне редко удается преодолеть пропасть одним отчаянным прыжком – макромутацией. В подавляющем большинстве случаев такие прыжки в горной местности кончаются понятно чем. Но все же бывают и удачные приземления. И тогда всем на диво какой-нибудь фермент, миллиарды лет занимавшийся превращением одного углевода в другой, вдруг превращается в кристаллин – белок хрусталика глаза, а пищеварительный фермент трипсин – в белок-антифриз, защищающий кровь антарктических рыб от замерзания[15].
Но это исключения. Как правило, эволюционное движение большого и сложного современного белка ограничено одним горным массивом – одной группой родственных функций. На больших высотах ландшафт приспособленности белков сильно разобщен, фрагментирован, так что с одного массива на другой попасть почти невозможно. Но вот на малых высотах, у подножья величественных горных массивов, простирается холмистая местность, передвигаться по которой простым и примитивным древним белкам было намного легче. Среди искусственно синтезированных коротких белковых молекул с произвольной последовательностью аминокислот можно найти молекулы, выполняющие – пусть и с низкой эффективностью – различные функции, выполняемые природными белками в клетке. Это значит, что, передвигаясь по этим низинам, можно наткнуться на предгорья какого-нибудь горного массива даже методом случайных блужданий!
Скорее всего, основные функции белков, соответствующие белковым надсемействам, были «нащупаны» еще в самом начале эволюционного становления генетического кода и синтеза белка у древних РНК-организмов[16]. Потом эти функции бесконечно совершенствовались и подразделялись на множество вариаций. Эволюционирующие последовательности взбирались все выше по склонам «своих» горных массивов, разбредаясь по развилкам и отрогам, и чем выше они поднимались, тем меньше оставалось у них шансов перейти с однажды выбранной горной системы на какую-то другую.
По-видимому, только для самых простых и коротких (но при этом все же полезных) белковых молекул существует реальная вероятность возникновения «из ничего», «на голом месте» – из случайной комбинации нуклеотидов, случайно закодировавших некоторую последовательность аминокислот. Такой способ формирования новых белков исчерпал себя еще в РНК-мире. С тех пор новые белки появляются только из старых – не с нуля, а путем модификации того, что есть. Это одно из главных правил эволюции. Почти все новое – это перекроенное старое.
15
Эти и другие примеры радикальной смены функций мы рассмотрим в главе 5.
16
Об РНК-организмах и теории РНК-мира рассказано в книге «Рождение сложности».