Читать книгу Рождение сложности. Эволюционная биология сегодня: неожиданные открытия и новые вопросы - Александр Марков - Страница 20
Глава 2. Планета микробов
Первые альтруисты
ОглавлениеПо-видимому, уже на самых ранних этапах развития прокариотной биосферы микробам приходилось сотрудничать друг с другом, объединяться в сложные коллективы и сообща решать стоящие перед ними биохимические "задачи". Эффективность и устойчивость микробных сообществ повышались за счет развития средств коммуникации между микробами. Развивались системы химического "общения". Выделяя в окружающую среду различные вещества, микроорганизмы сообщали соседям о своем состоянии и влияли на их поведение. Тогда же зародился и альтруизм – способность жертвовать собственными интересами на благо сообщества.
Возможно, многим читателям покажется сомнительным утверждение о существовании сложной социальной жизни, коммуникации и тем более альтруизма у микробов. Чтобы не быть голословным, приведу несколько фактов из жизни самой обычной, повсеместно встречающейся бактерии.
Бактерия Bacillus subtilis – широко распространенный почвенный микроб, относящийся к числу наиболее изученных. Геном "тонкой бациллы" (так переводится с латыни название этого микроорганизма) прочтен еще в 1997 году, и функции большинства генов в общих чертах известны.
Этого, однако, недостаточно, чтобы понять механизмы, управляющие сложным поведением бациллы. Этот микроб, например, умеет при необходимости отращивать жгутики и приобретать подвижность; собираться в "стаи", в которых передвижение микробов становится согласованным; принимать "решения" на основе химических сигналов, получаемых от сородичей. При этом используется особое "чувство кворума" – нечто вроде химического голосования, когда определенное критическое число поданных сородичами химических "голосов" меняет поведение бактерий. Мало того, В. subtilis способна собираться в многоклеточные агрегаты, по сложности своей структуры приближающиеся к многоклеточному организму.
В критической ситуации (например, при длительном голодании) бациллы превращаются в споры, устойчивые к неблагоприятным воздействиям, чтобы дождаться лучших времен. Но превращение в спору для В. subtilis – процесс дорогостоящий, требующий активизации около 500 генов, и эта мера приберегается на самый крайний случай. Ну а в качестве предпоследней меры в голодные времена микроб прибегает к убийству своих сородичей и каннибализму. Если, конечно, сородичей вокруг достаточно много, то есть плотность популяции высока. Если нет, тогда делать нечего, приходится превращаться в споры натощак.
Ученые выяснили, что при голодании у В. subtilis срабатывает особый генный переключатель, который может находиться лишь в одном из двух дискретных состояний (включено/выключено). "Переключатель" состоит из ключевого гена-регулятора Spoo
A и нескольких других генов, которые взаимно активируют друг друга по принципу положительной обратной связи.
Активизация Spoo
A приводит к целому каскаду реакций, в том числе к производству клеткой токсина SdpC, убивающего тех бацилл, у которых "переключатель" выключен. Однако хитрость состоит в том, что голодание приводит к активизации Spoo
A только у половины микробов. Погибшие клетки распадаются, высвободившиеся из них органические вещества всасываются убийцами. Если никаких перемен к лучшему так и не произойдет, они, по крайней мере, будут превращаться в споры сытыми.
До сих пор было неясно, почему токсин убивает только тех бацилл, которые его не выделяют (то есть тех, у кого Spoo
A не активирован). И вот что выяснилось (С.D. Ellermeier, E.C. Hobbs, J.E. Gonzales-Pastor, R. Losick A three-protein signaling pathway govering immunity to a bacterial connibalism toxin // Cell. 2006. 124. 549–559.). На мембране бацилл сидит защитный белок Sdpl, выполняющий сразу две функции. Во-первых, он защищает клетку от токсина SdpC (просто хватает молекулы токсина и держит, не дает им ничего делать). Во-вторых, молекула белка Sdpl, схватившая молекулу токсина, изменяется таким образом, что другой ее конец (торчащий из внутренней стороны мембраны) хватает и удерживает молекулы белка SdpR, функция которого состоит в том, чтобы блокировать производство защитного белка Sdpl.
Таким образом, схватывание защитным белком молекулы токсина приводит к инактивации белка, тормозящего производство защитного белка. То есть чем больше будет токсина, тем больше клетка будет производить защитного белка. А как только токсин в окружающей среде закончится, молекулы SdpR перестанут инактивироваться, и производство защитного белка остановится.
По молекулярно-биологическим меркам это крайне простой регуляторный каскад, проще некуда. Так бациллы защищаются от собственного токсина. А почему же бациллы с выключенным Spoo
A оказываются незащищенными? Оказывается, синтез спасительного Sdpl у них блокируется еще одним белком – AbrB. Отключить AbrB можно только путем включения Spo0A, поэтому клетки с выключенным Spo0A просто– напросто обречены.
Самым интересным тут является даже не каннибализм бацилл-убийц, а альтруизм бацилл-жертв, которые отключают себе все, что только можно, лишь бы помочь своим сородичам себя съесть.
Казалось бы, естественный отбор должен способствовать закреплению в потомстве признака "Spo0A включается при голодании" и отбраковывать особей с противоположным признаком. Действительно, ведь первые выживают и оставляют потомство, а вторые погибают, и так раз за разом, при каждой очередной голодовке. Однако генный "переключатель" упорно остается настроенным так, чтобы включаться при голодовке только в 50 % случаев. Ведь если все особи в популяции захотят стать каннибалами, а жертвами – никто, то все мероприятие потеряет смысл, есть будет некого. Интересы общества оказываются выше личных, и каннибализм одних расцветает лишь благодаря альтруизму других.