Читать книгу Защита астронавтов от радиации при полетах на Луну и Марс - Александр Матанцев - Страница 6
Введение
Часть 2. Расчеты делает автор, Александр Матанцев. Время пролета зон Ван Аллена
ОглавлениеПо официальной версии НАСА трасса Кондратюка была использована КА «Аполлон» для полётов на Луну и обратно. Наклонение данной трассы – около 30 градусов. Это обусловлено тем, что именно угол наклона между плоскостями орбит Земли и Луны 5 градусов, и плюс наклон параболы. Однако данная трасса целиком и полностью проходит через внутренний и внешний пояса Ван Аллена, притом через их максимумы. Таким образом, КА «Аполлон» мог бы пролетать внутренний РПЗ за 803 сек, т.е. приблизительно за 13 минут и внешний РПЗ за 3571 сек, т.е. приблизительно за 1 час [38].
Случай 1. Трасса Кондратюка, наклонение трассы – 30 градусов, а прохождение через зоны Ван Аллена -перпендикулярно.
В предыдущем разделе были указаны размеры зон Ван Аллена. Автор, Александр Матанцев, учитывая указанное время пролета космическим аппаратом КА внутренней зоны Ван Аллена за 803 секунды и внешней за 3571 секунду, делает расчет длины траектории в этих зонах. Расчет очень простой, берем вторую космическую скорость в 11,2 км/сек и умножаем на указанное время. Тогда длина траектории во внутренней зоне составит 11,2 х 803 = 9000 км
Для внешней зоны: 11,2 х 3571 = 40000 км.
Итак, в литературе была выбрана толщина внутреннего слоя Ван Аллена в 9 тыс. км, а внешнего слоя Ван Аллена, в 40 тыс. км.
Из предыдущего раздела находим, что точно такая же толщина внутренней зоны – от 3 до 12 тыс. км (12 – 3 = 9 тыс. км), указана в литературе [22, 49].
Кроме того, находим, что при определении времени пролета взята траектория, перпендикулярная входной поверхности зон Ван Аллена.
Случай 2. Прохождение через зоны Ван Аллена под углом в 10 и 15 градусов.
Автор, Алекандр Матанцев, составил модели прохождения космического аппарата (КА) под углом в 10 и 15 градусов – рис. 14 и рис. 15.
В результате показано, что длина полета КА под углом в 10 градусов через пояса Ван Аллена приводит к уменьшению времени пролета этой зоны до 94 – 94,9%.
Рис. 14
Рис. 14. Составил автор, Александр Матанцев. Движение космического аппарата (КА) через внутренний пояс Ван Аллена по разным направлениям
На рис. 14 рассмотрены три направления движения КА через внутренний пояс Ван Аллена:
– по направлению 0 градусов;
– по направлению 10 и 15 градусов,
По направлению 30 градусов.
Если взять расстояние (а0 – а1), пролетаемое КА через внутренний пояс Ван Аллена за 100%, то:
– расстояние по направлению 15 градусов составит, примерно, 94%,
– расстояние по направлению 30 градусов составит, примерно, 80%
Рис. 15
Рис. 15. Составил автор, Александр Матанцев. Движение космического аппарата (КА) через внешний пояс Ван Аллена по разным направлениям
На рис. 15 рассмотрены три направления движения КА через внешний пояс Ван Аллена:
– по направлению 0 градусов;
– по направлению 10 градусов,
По направлению 30 градусов.
Если взять расстояние (а0 – а1), пролетаемое КА через внешний пояс Ван Аллена за 100%, то:
– расстояние по направлению 10 градусов составит, примерно, 94,9%,
– расстояние по направлению 30 градусов составит, примерно, 62,7%
Следует отметить, что КА «Аполлон», чтобы долететь до Луны, должен был обязательно лететь по трассе Кондратюка, которая является оптимальной для полёта к Луне и обратно. Сущность данной трассы заключается в том, что при отклонении от неё гравитационное поле Земли не позволит вывести КА на параболическую траекторию, в связи с чем необходимо будет снижать массу полезной нагрузки. Некоторые пользователи различных чатов, не имея понятия о карте земной гравитации, говорят о том, что РН «Сатурн-5» с грузом 44 тонны якобы летел через полюса Земли, чтобы не пролетать через пояса Ван Аллена. Таким пользователям следует понимать, что для выведения 44 тонн через северный или южный полюс Земли необходимо было увеличить массу РН от официальной в 3 раза и во столько же раз увеличить тягу двигателей 1 и 2 ступеней данной РН! Дело в том, что Земля имеет максимум гравитации в районе полюсов и минимум – в плоскости экватора. Соответственно, чем ближе ракета космического назначения летит к плоскости экватора, тем большую полезную нагрузку РН может вывести на околоземную орбиту и тем меньше объем необходимого для этого КРТ [44].
Рис. 16
Рис. 16. Траектории движения Аполлон 11, Аполлон 14, Аполлон 15 и Аполлон 17 относительно геомагнитного экватора, так же указана внутренняя зона Ван Аллена [58].
Рис. 16 показывает, что на заявленной транслунной траектории Аполлон 14 и Аполлон 17 (также миссии Аполлон 10 и Аполлон 16 из-за близких параметров TLI к А-14) проходят через опасный для человека радиационный протонный пояс.
Аполлон 8, Аполлон 12, Аполлон 15 и Аполлон 17 проходят через сердцевину электронного радиационного пояса.
Случай 3. Прохождение через зоны Ван Аллена под углом в 30 градусов.
Автор, Александр Матанцев, показал в своих моделях (рис. 14 и рис. 15, что при движении КА под углом в 30 градусов относительно входной поверхности тора зон Ван Аллена время пролета в этих зонах уменьшается до 62,7 – 80% относительно длины пролета в направлении, перпендикулярном этим поверхностям.
Казалось бы, какое замечательное решение, увеличил угол влета КА в зоны Ван Аллены, и получай меньшее время полета в сильно радиационных зонах, и меньшую дозу облучения. На самом деле, необходимо учитывать два фактора:
– время пролета через зоны Ван Аллена;
– расстояние и общее время полета, например, до Луны или Марса.
Сущность этого положения состоит в увеличении количества топлива при удлинении всей траектории движения при большем угле.