Читать книгу Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей - Алексей Семихатов - Страница 6
Часть 1
Космические прогулки
Прогулка 1
Движение по правилам
Признания и литературные комментарии
ОглавлениеКоличество движения (в простейшем случае – произведение массы на скорость) имеет и более короткое название – «импульс», и этот термин можно было бы выучить и использовать, но я предпочел вариант, звучащий несколько более значаще. Для системы, на которую ничто не действует извне, суммарное количество движения всех ее частей – сохраняющаяся (не меняющаяся с течением времени) величина. В эквивалентной форме этот факт известен как самый, наверное, популярный – третий – закон Ньютона, на котором я не стал специально останавливаться (но о законах сохранения сказано еще немного в приложении Б).
Высказывание Эйнштейна о Кеплере взято из статьи "Albert Einstein über Kepler", впервые напечатанной в газете Frankfurter Zeitung в ноябре 1930 г.; русский перевод под названием «Иоганн Кеплер» включен в сборник статей Эйнштейна [42]. Там же – его статья «Механика Ньютона и ее влияние на формирование теоретической физики», написанная к 200-летию кончины Ньютона, из которой я также привожу цитату. Разнообразные подробности о жизни и трудах Тихо Браге, Кеплера, Галилея и Ньютона (и не только их) можно найти в энциклопедической книге [19]. Труды и жизнь Галилея в период его противостояния с инквизицией, представленные на фоне эпохи, интриг и растущего научного знания, – предмет захватывающего чтения в [13]. На Дейва Скотта, бросающего предметы на Луне, можно посмотреть по ссылке https://youtu.be/Oo8TaPVsn9Y. Цитата из самого Галилея взята из издания [8].
В связи с появлением у Кеплера некруговых орбит Владимир Сурдин отмечает определенный элемент «психологической подготовки»: уже в Птолемеевой геоцентрической системе мира Земля располагалась не в центре главной окружности (деферента), а была смещена от центра; в противоположную сторону от центра был смещен эквант – точка, при наблюдении из которой движение планеты выглядит равномерным. По поводу того, что «Ньютон угадал закон тяготения», стоит отметить, что Ньютон не действовал в вакууме, а был участником обмена идеями; развитие событий от переписки Ньютона с Гуком до появления «Начал» ясно и выразительно описано в книге [14] (чем ее содержание далеко не исчерпывается); я благодарен Дмитрию Баюку за обсуждение этих вопросов. Несколько упрощенное, но тоже интересное изложение истории, приведшей к появлению «Начал», имеется в книге [3]. Там же (помимо всего другого) рассказано и о Галлее. Научная и общественная биография Ньютона систематически исследуется в книге [106]. Интересно, насколько задержалось бы развитие науки в Новом времени, если бы (в гипотетической параллельной Вселенной) уравнения движения для планет не позволяли обозримым образом выразить точное решение и на основе постулатов Ньютона не удалось бы продемонстрировать явного быстрого успеха?
«Забытой» лекции Фейнмана посвящено блестящее изложение каналов minutephysics и 3Blue1Brown: https://youtu.be/xdIjYBtnvZU. Заодно стоит посмотреть рассказ в том же стиле от 3Blue1Brown, почему из конических сечений возникают именно эллипсы: https://youtu.be/pQa_tWZmlGs. «Незабытые» «Фейнмановские лекции по физике» [35] много раз переиздавались на русском, но я продолжаю пользоваться своими томиками, вышедшими в 1976 г. (это было уже третье русское издание). Как мне кажется, не потерял своей актуальности рецепт по-настоящему заинтересованного знакомства с физикой: читать первый том «Фейнмановских лекций…» до состояния потери понимания, и к тому моменту как раз станет понятно, выстраиваются ли ваши отношения с этой формой знания. Воспользуюсь случаем и порекомендую еще одну (тоже несчетное число раз переиздававшуюся) книгу Фейнмана [34], которая остается универсально актуальной – в частности, актуальной для большинства этих прогулок.
По поводу «зоны обитаемости», о которой говорят в связи с экзопланетами. Владимир Сурдин считает важным напоминание, что так называется диапазон расстояний от звезды, в пределах которого температура на поверхности планеты позволяет существовать там жидкой воде, и ничего сверх того не предполагается; сам Сурдин, однако, предпочитает название «зона жизни». Рисунок 1.3 взят с сайта NASA https://exoplanets.nasa.gov/resources/131/lining-kepler-habitable-zone-planets-up, где приведен с целью проиллюстрировать сравнительные размеры потенциально обитаемых планет, открытых с помощью телескопа «Кеплер». Никакие подробности о том, как они на самом деле выглядят, нам, конечно, неизвестны. Достаточно условно и изображение Оумуамуа на рис. 1.6, взятое с сайта https://solarsystem.nasa.gov/asteroids-comets-and-meteors/comets/oumuamua/in-depth/, где оно приведено со ссылкой на Европейскую южную обсерваторию (European Southern Observatory, ESO) и дизайнера Мартина Корнмессера. Главное в нем – крайне необычное для астероида соотношение (около 10: 1) его большого и малых размеров.
На восходящий к Галилею вопрос о причинах, определяющих эффективность математики в науках, Тегмарк [31] отвечает максимально последовательно с минимальным, как мне кажется, числом дополнительных гипотез и построений: потому что Вселенная и есть математика. Я бы, несомненно, согласился с этим заявлением в еще большей степени, чем согласен сейчас, если бы лучше понимал, что в точности оно значит. Среди немалого числа высказываний о роли математики в науках название статьи [5] стало мемом, она вошла и в сборник [6]; в этих изданиях переводчики почему-то сократили имя автора, Юджин, до буквы Е.