Читать книгу Vibroacoustic Simulation - Alexander Peiffer - Страница 79
2.7.4 Power Radiation
ОглавлениеFor the radiated power calculation of the piston we took the pressure at the piston surface and integrated the pressure–velocity product over the surface. Due to the fact that the velocity is constant the surface integral involves mainly the pressure as a space-dependent property. In case of vibrating structures with complex shapes of vibration the velocity distribution over the surface is not homogeneous, and we need a more detailed approach.
(2.157)
In the above equation a function with argument (r−r0) is multiplied by the velocity function for r0 and integrated over the two-dimensional space. Mathematically, this can be interpreted as a two-dimensional convolution in space
(2.158)
Thus, when we apply the two-dimensional Fourier transform to the Rayleigh integral the result is the product of the Fourier transform of the vibration shape vz(r0) and the Green’s function in wavenumber space leading to
(2.159)
So, we have replaced the expensive convolution operation by a multiplication. This simplification is at the cost of two-dimensional Fourier transforms that are required to get the expressions in wavenumber domain.
The time averaged intensity of a sound field is given by the product of pressure and velocity (2.45). As the velocity is not uniform over the surface we perform a surface integration over the vibrating area to get the total radiated power
(2.160)
Thus, for the determination of radiated power a double area integral is required that may become computationally expensive.
In the above expression we can also switch to the wavenumber domain. In this case the area integration is replaced by an integration over the two-dimensional wavenumber space.
(2.161)
The double integral is replaced by a single two-dimensional wavenumber integration. Thus, once the shape function is available the power calculation in wavenumber space is much faster than in real space (Graham, 1996).