Читать книгу Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras - Alfred Russel Wallace - Страница 12

PART I
THE DISPERSAL OF ORGANISMS
ITS PHENOMENA, LAWS, AND CAUSES
CHAPTER VIII
THE CAUSES OF GLACIAL EPOCHS

Оглавление

Various Suggested Causes—Astronomical Causes of Changes of Climate—Difference of Temperature caused by Varying Distance of the Sun—Properties of Air and Water, Snow and Ice, in Relation to Climate—Effects of Snow on Climate—High Land and Great Moisture Essential to the Initiation of a Glacial Epoch—Perpetual Snow nowhere Exists on Lowlands—Conditions Determining the Presence or Absence of Perpetual Snow—Efficiency of Astronomical Causes in Producing Glaciation—Action of Meteorological causes in Intensifying Glaciation—Summary of Causes of Glaciation—Effect of Clouds and Fog in cutting off the Sun's Heat—South Temperate America as Illustrating the Influence of Astronomical Causes on Climate—Geographical Changes how far a Cause of Glaciation—Land acting as a Barrier to Ocean-currents—The theory of Interglacial Periods and their Probable Character—Probable Effect of Winter in Aphelion on the Climate of Britain—The Essential Principle of Climatal Change Restated—Probable Date of the last Glacial Epoch—Changes of the Sea-level dependent on Glaciation—The Planet Mars as bearing on the Theory of Excentricity as a Cause of Glacial Epochs.

No less than seven different causes have been at various times advanced to account for the glacial epoch and other changes of climate which the geological record proves to have taken place. These, as enumerated by Mr. Searles V. Wood, Jun., are as follows:—

1. A decrease in the original heat of our planet.

2. Changes in the obliquity of the ecliptic.

3. The combined effect of the precession of the equinoxes and of the excentricity of the earth's orbit.

4. Changes in the distribution of land and water.

5. Changes in the position of the earth's axis of rotation.

6. A variation in the amount of heat radiated by the sun.

7. A variation in the temperature of space.

Of the above, causes (1) and (2) are undoubted realities; but it is now generally admitted that they are utterly inadequate to produce the observed effects. Causes (5) (6) and (7) are all purely hypothetical, for though such changes may have occurred there is no evidence that they have occurred during geological time; and it is besides certain that they would not, either singly or combined, be adequate to explain the whole of the phenomena. There remain causes (3) and (4), which have the advantage of being demonstrated facts, and which are universally admitted to be capable of producing some effect of the nature required, the only question being whether, either alone or in combination, they are adequate to produce all the observed effects. It is therefore to these two causes that we shall confine our inquiry, taking first those astronomical causes whose complex and wide reaching effects have been so admirably explained and discussed by Dr. Croll in numerous papers and in his work—"Climate and Time in their Geological Relations."


DIAGRAM SHOWING THE ALTERED POSITION OF THE POLES AT INTERVALS OF 10,500 YEARS PRODUCED BY THE PRECESSION OF THE EQUINOXES AND THE MOTION OF THE APHELION; AND ITS EFFECT ON CLIMATE DURING A PERIOD OF HIGH EXCENTRICITY.


Astronomical Causes of Changes of Climate.—The earth moves in an elliptical orbit round the sun, which is situated in one of the foci of the ellipse, so that the distance of the sun from us varies during the year to a considerable amount. Strange to say we are now three millions of miles nearer to the sun in winter than in summer, while the reverse is the case in the southern hemisphere; and this must have some effect in making our northern winters less severe than those of the south temperate zone. But the earth moves more rapidly in that part of its orbit which is nearer to the sun, so that our winter is not only milder, but several days shorter, than that of the southern hemisphere. The distribution of land and sea and other local causes prevent us from making any accurate estimate of the effects due to these differences; but there can be no doubt that if our winter were as long as our summer is now and we were also three million miles further from the sun at the former period, a very decided difference of climate would result—our winter would be colder and longer, our summer hotter and shorter. Now there is a combination of astronomical revolutions (the precession of the equinoxes and the motion of the aphelion) which actually brings this change about every 10,500 years, so that after this interval the condition of the two hemispheres is reversed as regards nearness to the sun in summer, and comparative duration of summer and winter; and this change has been going on throughout all geological periods. (See Diagram.) The influence of the present phase of precession is perhaps seen in the great extension of the antarctic ice-fields, and the existence of glaciers at the sea-level in the southern hemisphere, in latitudes corresponding to that of England; but it is not supposed that similar effects were produced with us at the last cold period, 10,500 years ago, because we are exceptionally favoured, by the Gulf-stream warming the whole North Atlantic ocean and by the prevalence of westerly winds which convey that warmth to our shores; and also by the comparatively small quantity of high land around the North Pole which does not encourage great accumulations of ice. But besides this change in the relation of our seasons to the earth's aphelion and perihelion there is another and still more important astronomical factor in the change of magnitude of the excentricity itself. This varies very largely, though very slowly, and it is now nearly at a minimum. It also varies very irregularly; but its amount has been calculated for several million years back. Fifty thousand years ago it was rather less than it is now, but it then increased, and when we come to a hundred thousand years ago there is a difference of eight and a half millions of miles between our distance from the sun in aphelion and perihelion (as the most distant and nearest points of the earth's orbit are termed). At a hundred and fifty thousand years back it had decreased somewhat—to six millions of miles; but then it increased again, till at two hundred thousand years ago it was ten and a quarter, and at two hundred and ten thousand years ten and a half millions of miles. By reference to the accompanying diagram, which includes the last great period of excentricity, we find, that for the immense period of a hundred and sixty thousand years (commencing about eighty thousand years ago) the excentricity was very great, reaching a maximum of three and a half times its present amount at almost the remotest part of this period, at which time the length of summer in one hemisphere and of winter in the other would be nearly twenty-eight days in excess. Now, during all this time, our position would change, as above described (and as indicated on the diagram), every ten thousand five hundred years; so that we should have alternate periods of very long and cold winters with short hot summers, and short mild winters with long cool summers. In order to understand the important effects which this would produce we must ascertain two things—first, what actual difference of temperature would be caused by varying distances of the sun, and, secondly, what are the properties of snow and ice in regard to climate.


DIAGRAM OF EXCENTRICITY AND PRECESSION.

The dark and light bands mark the phases of precession, the dark showing short mild winters, and the light long cold winters, the contrast being greater as the excentricity is higher. The horizontal dotted line shows the amount of the present excentricity. The figures show the maxima and minima of excentricity during the last 300,000 years from Dr. Croll's Tables.


Differences of Temperature Caused by Varying Distances of the Sun.—On this subject comparatively few persons have correct ideas owing to the unscientific manner in which we reckon heat by our thermometers. The zero of Fahrenheit's thermometer is thirty-two degrees below the freezing point of water, and that of the centigrade thermometer, the freezing point itself, both of which are equally misleading when applied to cosmical problems. If we say that the mean temperature of a place is 50° F., or 10° C., these figures tell us nothing of how much the sun warms that place, because if the sun were withdrawn the temperature would fall far below either of the zero points. In the last Arctic Expedition a temperature of -74° F. was registered, or 106° below the freezing point of water; and as at the same time the earth, at a depth of two feet, was only, -13° F. and the sea water +28° F., both influencing the temperature of the air, we may be sure that even this intense cold was not near the possible minimum temperature. By various calculations and experiments which cannot be entered upon here, it has been determined that the temperature of space, independent of solar (but not of stellar) influence, is about -239° F., and physicists almost universally adopt this quantity in all estimates of cosmical temperature. It follows, that if the mean temperature of the earth's surface at any time is 50° F. it is really warmed by the sun to an amount measured by 50 + 239 = 289° F., which is hence termed its absolute temperature. Now during the time of the glacial epoch the greatest distance of the sun in winter was 98¼ millions of miles, whereas it is now, in winter, only 91½ millions of miles, the mean distance being taken as 93 million miles. But the quantity of heat received from the sun is inversely as the square of the distance, so that it would then be in the proportion of 8,372 to 9,613 now, or nearly one seventh less than its present amount. The mean temperature of England in January is about 37° F., which equals 276° F. of absolute temperature. But the above-named fraction of 276° is 237, the difference, 39, representing the amount which must be deducted to obtain the January temperature during the glacial epoch, which will therefore be -2° F. But this is a purely theoretic result. The actual temperature at that time might have been very different from this, because the temperature of a place does not depend so much on the amount of heat it receives directly from the sun, as on the amount brought to it or carried away from it by warm or cold winds. We often have it bitterly cold in the middle of May when we are receiving as much sun heat as many parts of the tropics, but we get cold winds from the iceberg-laden North Atlantic, and this largely neutralises the effect of the sun. So we often have it very mild in December if south-westerly winds bring us warm moist air from the Gulf-stream. But though the above method does not give correct results for any one time or place, it will be more nearly correct for very large areas, because all the sensible surface-heat which produces climates necessarily comes from the sun, and its proportionate amount may be very nearly calculated in the manner above described. We may therefore say, generally, that during our winter, at the time of the glacial epoch, the northern hemisphere was receiving so much less heat from the sun as was calculated to lower its surface temperature on an average about 39° F., while during the height of summer of the same period it would be receiving so much more heat as would suffice, other conditions being equal, to raise its mean temperature about 48° above what it is now. The winter, moreover, would be long and the summer short, the difference being twenty-six days.

We have here certainly an amount of cold in winter amply sufficient to produce a glacial period,45 especially as this cold would be long continued; but at the same time we should have almost tropical heat in summer, although that season would be somewhat shorter. How then, it may be asked, could such a climate have the effect supposed? Would not the snow that fell in winter be all melted by the excessively hot summer? In order to answer this question we must take account of certain properties of water and air, snow and ice, to which due weight has not been given by writers on this subject.

Properties of Air and Water, Snow and Ice, in Relation to Climate.—The great aerial ocean which surrounds us has the wonderful property of allowing the heat-rays from the sun to pass through it without its being warmed by them; but when the earth is heated the air gets warmed by contact with it, and also to a considerable extent by the heat radiated from the warm earth, because, although pure dry air allows such dark heat-rays to pass freely, yet the aqueous vapour and carbonic acid in the air intercept and absorb them. But the air thus warmed by the earth is in continual motion owing to changes of density. It rises up and flows off, owing to the greater weight of the cooler air which forces it up and takes its place; and thus heat can never accumulate in the atmosphere beyond a very moderate degree, the excessive sun-heat of the tropics being much of it carried away to the upper atmosphere and radiated into space. Water also is very mobile; and although it receives and stores up a great deal of heat, it is for ever dispersing it over the earth. The rain which brings down a certain portion of heat from the atmosphere, and which often absorbs heat from the earth on which it falls, flows away in streams to the ocean; while the ocean itself, constantly impelled by the winds, forms great currents, which carry off the surplus heated water of the tropics to the temperate and even to the polar regions, while colder water flows from the poles to ameliorate the heat of the tropics. An immense quantity of sun-heat is also used up in evaporating water, and the vapour thus produced is conveyed by the aerial currents to distant countries, where, on being condensed into rain, it gives up much of this heat to the earth and atmosphere.

The power of water in carrying away heat is well exhibited by the fact of the abnormally high temperature of arid deserts and of very dry countries generally; while the still more powerful influence of moving air may be appreciated, by considering the effects of even our northern sun in heating a tightly-closed glass house to far above the temperature produced by the vertical sun of the equator where the free air and abundance of moisture exert their beneficial influence. Were it not for the large proportion of the sun's heat carried away by air and water the tropics would become uninhabitable furnaces—as would indeed any part of the earth where the sun shone brightly throughout a summer's day.

We see, therefore, that the excess of heat derived from the sun at any place cannot be stored up to an important amount owing to the wonderful dispersing agency of air and water; and though some heat does penetrate the ground and is stored up there, this is so little in proportion to the whole amount received, and the larger part of it is so soon given out from the surface layers, that any surplus heat that may be thus preserved during one summer of the temperate zones rarely or never remains in sufficient quantity to affect the temperature of the succeeding summer, so that there is no such thing as an accumulation of earth-heat from year to year. But, though heat cannot, cold can be stored up to an almost unlimited amount, owing to the peculiar property water possesses of becoming solid at a moderately low temperature; and as this is a subject of the very greatest importance to our inquiry—the whole question of the possibility of glacial epochs and warm periods depending on it—we must consider it in some detail.

Effects of Snow on Climate.—Let us then examine the very different effects produced by water falling as a liquid in the form of rain, or as a solid in the form of snow, although the two may not differ from each other more than two or three degrees in temperature. The rain, however much of it may fall, runs off rapidly into streams and rivers, and soon reaches the ocean, a small portion only sinking into the earth and another portion evaporating into the atmosphere. If cold it cools the air and the earth somewhat while passing through or over them, but produces no permanent effect on temperature, because a few hours of sunshine restore to the air or the surface-soil all the heat they had lost. But if snow falls for a long time, the effect, as we all know, is very different, because it has no mobility. It remains where it fell and becomes compacted into a mass, and it then keeps the earth below it and the air above, at or near the freezing-point till it is all melted. If the quantity is great it may take days or weeks to melt; and if snow continues falling it goes on accumulating all over the surface of a country (which water cannot do), and may thus form such a mass that the warmth of the whole succeeding summer may not be able to melt it. It then produces perpetual snow, such as we find above a certain altitude on all the great mountains of the globe; and when this takes place cold is rendered permanent, no amount of sun-heat warming the air or the earth much above the freezing-point. This is illustrated by the often-quoted fact that, at 80° N. Lat., Captain Scoresby had the pitch melted on one side of his ship by the heat of the sun, while water was freezing on the other side owing to the coldness of the air.

The quantity of heat required to melt ice or snow is very great, as we all know by experience of the long time masses of snow will remain unmelted even in warm weather. We shall however be better able to appreciate the great effect this has upon climate, by a few figures showing what this amount really is. In order to melt one cubic foot of ice, as much heat is required as would heat a cubic foot of water from the freezing point to 176° F., or two cubic feet to 88° F. To melt a layer of ice a foot thick will therefore use up as much heat as would raise a layer of ice-cold water two feet thick to the temperature of 88° F.; and the effect becomes still more easily understood if we estimate it as applied to air, for to melt a layer of ice only 1½ inches thick would require as much heat as would raise a stratum of air 800 feet thick from the freezing point to the tropical heat of 88° F.! We thus obtain a good idea, both of the wonderful power of snow and ice in keeping down temperature, and also of the reason why it requires so long a time to melt away, and is able to go on accumulating to such an extent as to become permanent. These properties would, however, be of no avail if it were liquid, like water; hence it is the state of solidity and almost complete immobility of ice that enables it to produce by its accumulation such extraordinary effects in physical geography and in climate, as we see in the glaciers of Switzerland and the ice-capped interior of Greenland.

High Land and great Moisture Essential to the Initiation of a Glacial Epoch.—Another point of great importance in connection with this subject, is the fact, that this permanent storing up of cold depends entirely on the annual amount of snow-fall in proportion to that of the sun and air-heat, and not on the actual cold of winter, or even on the average cold of the year.46 A place may be intensely cold in winter and may have a short arctic summer, yet, if so little snow falls that it is quickly melted by the returning sun, there is nothing to prevent the summer being hot and the earth producing a luxuriant vegetation. As an example of this we have great forests in the extreme north of Asia and America where the winters are colder and the summers shorter than in Greenland in Lat. 62° N., or than in Heard Island and South Georgia, both in Lat. 53° S. in the Southern Ocean, and almost wholly covered with perpetual snow and ice. At the "Jardin" on the Mount Blanc range, above the line of perpetual snow, a thermometer in an exposed situation marked -6° F. as the lowest winter temperature: while in many parts of Siberia mercury freezes during several weeks in winter, showing a temperature below -40° F.; yet here the summers are hot, all the snow disappears, and there is a luxuriant vegetation. Even in the very highest latitudes reached by our last Arctic Expedition there is very little perpetual snow or ice, for Captain Nares tells us that north of Haye's Sound, in Lat. 79° N., the mountains were remarkably free from ice-cap, while extensive tracts of land were free from snow during summer, and covered with a rich vegetation with abundance of bright flowers. The reason of this is evidently the scanty snow-fall, which rendered it sometimes difficult to obtain enough to form shelter-banks around the ships; and this was north of 80° N. Lat., where the sun was absent for 142 days.

Perpetual Snow Nowhere Exists on Lowland Areas.—It is a very remarkable and most suggestive fact, that nowhere in the world at the present time are there any extensive lowlands covered with perpetual snow. The Tundras of Siberia and the barren grounds of N. America are all clothed with some kind of summer vegetation;47 and it is only where there are lofty mountains or plateaus—as in Greenland, Spitzbergen, and Grinnell's Land—that glaciers, accompanied by perpetual snow, cover the country, and descend in places to the level of the sea. In the Antarctic regions there are extensive highlands and lofty mountains, and these are everywhere exposed to the influence of moist sea-air; and it is here, accordingly, that we find the nearest approach to a true ice-cap covering the whole circumference of the Antarctic continent, and forming a girdle of ice-cliffs which almost everywhere descend to the sea. Such Antarctic islands as South Georgia, South Shetland, and Heard Island, are often said to have perpetual snow at sea-level; but they are all very mountainous, and send down glaciers into the sea, and as they are exposed to moist sea-air on every side, the precipitation, almost all of which takes the form of snow even in summer, is of course unusually large.48

That high land in an area of great precipitation is the necessary condition of glaciation, is well shown by the general state of the two polar areas at the present time. The northern part of the north temperate zone is almost all land, mostly low but with elevated borders; while the polar area is, with the exception of Greenland and a few other considerable islands, almost all water. In the southern hemisphere the temperate zone is almost all water, while the polar area is almost all land, or is at least inclosed by a ring of high and mountainous land. The result is that in the north the polar area is free from any accumulation of permanent ice (except on the highlands of Greenland and Grinnell's Land), while in the south a complete barrier of ice of enormous thickness appears to surround the pole. Dr. Croll shows, from the measured height of numerous Antarctic icebergs (often miles in length) that the ice-sheet from which they are the broken outer fragments must be from a mile to a mile and a half in thickness.49 As this is the thickness of the outer edge of the ice it must be far thicker inland; and we thus find that the Antarctic continent is at this very time suffering glaciation to quite as great an extent as we have reason to believe occurred in the same latitudes of the northern hemisphere during the last glacial epoch.

The accompanying diagrams show the comparative state of the two polar areas both as regards the distribution of land and sea, and the extent of the ice-sheet and floating icebergs. The much greater quantity of ice at the south pole is undoubtedly due to the presence of a large extent of high land, which acts as a condenser, and an unbroken surrounding ocean, which affords a constant supply of vapour; and the effect is intensified by winter being there in aphelion, and thus several days longer than with us, while the whole southern hemisphere is at that time farther from the sun, and therefore receives less heat.

We see, however, that with less favourable conditions for the production and accumulation of ice, Greenland is glaciated down to Lat. 61°. What, then, would be the effect if the Antarctic continent, instead of being confined almost wholly within the south polar circle, were to extend in one or two great mountainous promontories far into the temperate zone? The comparatively small Heard Island in S. Lat. 53° is even now glaciated down to the sea. What would be its condition were it a northerly extension of a lofty Antarctic continent? We may be quite sure that glaciation would then be far more severe, and that an ice-sheet corresponding to that of Greenland might extend to beyond the parallel of 50° S. Lat. Even this is probably much too low an estimate, for on the west coast of New Zealand in S. Lat. 43° 35′ a glacier even now descends to within 705 feet of the sea-level; and if those islands were the northern extension of an Antarctic continent, we may be pretty sure that they would be nearly in the ice-covered condition of Greenland, although situated in the latitude of Marseilles.


Diagram of the approximate extent of Permanent and Floating Ice around the North and the South Poles. (After Petermann.)


Conditions Determining the Presence or Absence of Perpetual Snow.—It is clear, then, that the vicinity of a sea or ocean to supply moisture, together with high land to serve as a condenser of that moisture into snow, are the prime essentials of a great accumulation of ice; and it is fully in accordance with this view that we find the most undoubted signs of extensive glaciation in the west of Europe and the east of North America, both washed by the Atlantic and both having abundance of high land to condense the moisture which it supplies. Without these conditions cold alone, however great, can produce no glacial epoch. This is strikingly shown by the fact, that in the very coldest portions of the two northern continents—Eastern Siberia and the north-western shores of Hudson's Bay—there is no perennial covering of snow or ice whatever. No less remarkable is the coincidence of the districts of greatest glaciation with those of greatest rainfall at the present time. Looking at a rain-map of the British Isles, we see that the greatest area of excessive rainfall is the Highlands of Scotland, then follows the west of Ireland, Wales, and the north of England; and these were glaciated pretty nearly in proportion to the area of country over which there is an abundant supply of moisture. So in Europe, the Alps and the Scandinavian mountains have excessive rainfall, and have been areas of excessive glaciation, while the Ural and Caucasian mountains, with less rain, never seem to have been proportionally glaciated. In North America the eastern coast has an abundant rainfall, and New England with North-eastern Canada seems to have been the source of much of the glaciation of that continent.50

45

In a letter to Nature of October 30th, 1879, the Rev. O. Fisher calls attention to a result arrived at by Pouillet, that the temperature which the surface of the ground would assume if the sun were extinguished would be -128° F. instead of -239° F. If this corrected amount were used in our calculations, the January temperature of England during the glacial epoch would come out 17° F., and this Mr. Fisher thinks not low enough to cause any extreme difference from the present climate. In this opinion, however, I cannot agree with him. On the contrary, it would, I think, be a relief to the theory were the amounts of decrease of temperature in winter and increase in summer rendered more moderate, since according to the usual calculation (which I have adopted) the differences are unnecessarily great. I cannot therefore think that this modification of the temperatures, should it be ultimately proved to be correct (which is altogether denied by Dr. Croll), would be any serious objection to the adoption of Dr. Croll's theory of the Astronomical and Physical causes of the Glacial Epoch.

The reason of the theoretical increase of summer heat being greater than the decrease of winter cold is because we are now nearest the sun in winter and farthest in summer, whereas we calculate the temperatures of the glacial epoch for the phase of precession when the aphelion was in winter. A large part of the increase of temperature would no doubt be used up in melting ice and evaporating water, so that there would be a much less increase of sensible heat; while only a portion of the theoretical lowering of temperature in winter would be actually produced owing to equalising effect of winds and currents, and the storing up of heat by the earth and ocean.

46

Dr. Croll says this "is one of the most widespread and fundamental errors within the whole range of geological climatology." The temperature of the snow itself is, he says, one of the main factors. (Climate and Cosmology, p. 85.) But surely the temperature of the snow must depend on the temperature of the air through which it falls.

47

In an account of Prof. Nordenskjöld's recent expedition round the northern coast of Asia, given in Nature, November 20th, 1879, we have the following passage, fully supporting the statement in the text. "Along the whole coast, from the White Sea to Behring's Straits, no glacier was seen. During autumn the Siberian coast is nearly free of ice and snow. There are no mountains covered all the year round with snow, although some of them rise to a height of more than 2,000 feet." It must be remembered that the north coast of Eastern Siberia is in the area of supposed greatest winter cold on the globe.

48

Dr. Croll objects to this argument on the ground that Greenland and the Antarctic continent are probably lowlands or groups of islands. (Climate and Cosmology, Chap. V.)

49

"On the Glacial Epoch," by James Croll. Geol. Mag. July, August, 1874.

50

"The general absence of recent marks of glacial action in Eastern Europe is well known; and the series of changes which have been so well traced and described by Prof. Szabó as occurring in those districts seems to leave no room for those periodical extensions of 'ice-caps' with which some authors in this country have amused themselves and their readers. Mr. Campbell, whose ability to recognise the physical evidence of glaciers will scarcely be questioned, finds quite the same absence of the proof of extensive ice-action in North America, westward of the meridian of Chicago." (Prof. J. W. Judd in Geol. Mag. 1876, p. 535.)

The same author notes the diminution of marks of ice-action on going eastward in the Alps; and the Altai Mountains far in Central Asia show no signs of having been largely glaciated. West of the Rocky Mountains, however, in the Sierra Nevada and the coast ranges further north, signs of extensive old glaciers again appear; all which phenomena are strikingly in accordance with the theory here advocated, of the absolute dependence of glaciation on abundant rainfall and elevated snow-condensers and accumulators.

Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras

Подняться наверх