Читать книгу Методичка по общей микробиологии для студентов медицинского факультета - Алисия Вермонт - Страница 10

3.3. Метаболизм бактерий.

Оглавление

Метаболизм (обмен веществ) бактерий представляет собой совокупность 2 взаимосвязанных противоположных процессов: катаболизма и анаболизма.

Катаболизм (диссимиляция) – распад веществ в процессе ферментативных реакций и накопление выделяемой при этом энергии в молекулах АТФ.

Анаболизм (ассимиляция) – синтез веществ с затратой энергии.

Особенности метаболизма у бактерий состоят в том, что:

– его интенсивность имеет достаточно высокий уровень, что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных;


-процессы диссимиляции преобладают над процессами ассимиляции;

– субстратный спектр потребляемых бактериями веществ очень широк – от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества – загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения);

– бактерии имеют очень широкий набор различных ферментов – это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра.

Ферменты бактерий по локализации делятся на 2 группы:

– экзоферменты – ферменты бактерий, выделяемые во внешнюю среду и действующие на субстрат вне клетки (протеазы, полисахариды, олигосахаридазы);

– эндоферменты – ферменты бактерий, действующие на субстраты внутри клетки (расщепляющие аминокислоты, моносахара, синтетазы).

Синтез ферментов генетически детерминирован, но регуляция их синтеза идет за счет прямой и обратной связи, т. Е. для одних – репрессируется, а для других – индуцируется субстратом. Ферменты, синтез которых зависит от наличия соответствующего субстрата в среде (бета-галактозидаза, бета-лактамаза), называются индуцибельными.

Другая группа ферментов, синтез которых не зависит от наличия субстрата в среде, называется конститутивными (ферменты гликолиза). Их синтез имеет место всегда, и они всегда содержатся в микробных клетках в определенных концентрациях. Изучают метаболизм бактерий с помощью физико-химических и биохимических методов исследования в процессе культивирования бактерий в определенных условиях на специальных питательных средах, содержащих то или иное соединение в качестве субстрата для трансформации.

В микробной клетке ферменты катализируют многочисленные процессы биосинтеза клеточных структур и получения энергии. У бактерий обнаруживаются основные группы ферментов:

Оксидоредуктазы – катализируют реакции окисления-восстановления.

Трансферазы – катализируют реакции переноса различных групп от донора к акцептору.

Гидролазы – катализируют разрыв связей в субстратах с присоединением воды.

Лиазы – катализируют реакции разрыва связей в субстрате без присоединения воды или окисления.

Изомеразы – катализируют превращения в пределах одной молекулы (внутримолекулярные перестройки).

Лигазы (синтетазы) – катализируют присоединение двух молекул с использованием энергии фосфатных связей.

3.3.1 Биосинтез углеводов.

Если микроорганизмы – автотрофы, то исходным веществом для синтеза углеводов является СО2. Синтез углеводов происходит у большинства автотрофов в цикле Кальвина (восстановительный пентозофосфатный цикл), который функционирует так же, как и у растений.

Для цикла Кальвина характерны два специфических фермента, не участвующие в других метаболических путях. Это:

1) фосфорибулокиназа, превращающая рибулозо-5-фосфат при участии АТФ в рибулозо-1,5-дифосфат, который затем выступает в качестве акцептора СО2;

2) рибулозо-1,5-дифосфаткарбоксилаза, катализующая реакцию фиксации СО2 рибулозо-1,5-дифосфатом с образованием двух молекул 3-фосфоглицериновой кислоты. Последняя подвергается серии последовательных ферментативных превращений, ведущих к образованию молекулы глюкозы.

У бактерий-гетеротрофов на среде с неуглеводными предшественниками (например, аминокислотами, глицерином, молочной кислотой) синтез углеводов осуществляется с использованием реакций гликолитического пути, идущих в обратном направлении. Этот процесс называется глюконеогенезом. Но некоторые ферментативные реакции гликолитического пути необратимы (реакции, катализируемые гексокиназой, фосфофруктокиназой и пируваткиназой). Поэтому в клетках гетеротрофных прокариот, способных использовать двух- и трехуглеродные соединения, сформировались специальные ферментативные реакции, позволяющие обходить необратимые реакции гликолитического пути. Одной из таких обходных реакций у бактерий E. coli и других бактерий является превращение пирувата в фосфоенолпируват (ФЕП) под действием фосфоенолпируватсинтетазы:

Методичка по общей микробиологии для студентов медицинского факультета

Подняться наверх