Читать книгу Воображайте-2. Полигон для мозгов - Алла Зусман - Страница 5

День пятнадцатый. Самый главный инструмент
Продолжаем работу по алгоритму, формулируем ИКР-1

Оглавление

3.1. Икс-элемент, абсолютно не усложняя систему и не вызывая вредных явлений, устраняет разрушение электрода в зоне его контакта с дугой во время её горения, не мешая дуге резать металл.


– А зачем нужно писать каждый раз «абсолютно не усложняя систему и не вызывая вредных явлений»? И так понятно, только лишняя писанина!

– Я знаю! – кричит Саша. – Это для преодоления психологической инерции лучше лишний раз напомнить об идеальности! Совершенно верное рассуждение. Но в своей тетради он неразборчиво написал: Х – Э, а.н.у.с. и н.в.в. я… Это безобразие. Нельзя экономить на формулировках!


3.2. Пересмотрев ещё раз имеющиеся в оперативной зоне и вокруг неё ресурсы, мы не нашли ничего подходящего.

3.3. Формулируем физическое противоречие. Оперативная зона должна быть электропроводной, чтобы загоралась дуга, и не должна быть электропроводной, чтобы…

– Женя остановился. Почему же ей, собственно, не быть электропроводной? Ведь не в этом причина разрушения электрода.

– Оперативная зона должна быть холодной, чтобы электрод не разрушался, и должна быть горячей

– Тоже затруднение – нет причин, чтобы оперативная зона была горячей – не получается противоречие. Нелегко найти ту именно характеристику, то состояние оперативной зоны, к которой предъявляются противоречивые требования! Но найти обязательно нужно. И если все-таки не удается, в АРИЗ есть запасной вариант – краткое ФП: в оперативной зоне должно быть нечто, чтобы…, и не должно этого быть, чтобы…

С немалым трудом ребята выходят на удовлетворяющую всех формулировку ФП на макроуровне: В оперативной зоне во время работы дуги должен быть контакт между дугой и электродом, чтобы горела дуга, и его не должно быть, чтобы электрод не разрушался.


3.4. Переход к ФП на микроуровне уже не так труден. Частицы дуги в зоне контакта должны соприкасаться с частицами электрода, чтобы контакт был, и не должны соприкасаться, чтобы контакта не было.

3.5. Поверхность электрода сама обеспечивает во время горения дуги наличие и отсутствие контакта дуги с частицами электрода.


Вот такая получилась новая формулировка нашей задачи. Она кажется странной, «дикой», не похожей на первоначальную! Но опыт решения многих изобретательских задач говорит, что нарастание «дикости» – признак верного пути к решению.


3.6. – Снова вепольный анализ? – удивляются ребята. Мы же уже использовали веполи, когда работали с моделью задачи.


– Да, снова. Ведь вы уже видели, что по мере продвижения по шагам алгоритма задача все время меняется. Значит, могут срабатывать и разные правила вепольного анализа. Правда, в АРИЗ для взрослых используется не вепольный анализ, а другой инструмент – «Стандарты на решение изобретательских задач». Каждый стандарт – это комплекс, включающий один или несколько изобретательских приёмов в сочетании с физическим эффектом и предназначенный для решения определенного типа задач. Вепольный анализ – это язык, с помощью которого легко находить и применять нужные стандарты. Некоторые стандарты совпадают с уже известными вам вепольными правилами, например, правила достройки, правила разрушения. Стандартов много – сегодня используется система из 77 стандартов.

Система стандартов – это целая книга, с множеством примеров. У нас, к сожалению, нет возможности изучить стандарты подробно, поэтому мы будем продолжать пользоваться вепольным анализом. Но если у вас возникнет необходимость решать сложные изобретательские задачи – эти стандарты легко найти в Интернете.


Итак снова пробуем вепольные преобразования. B1 – поверхность электрода, B2 – частица дуги. Нет поля, обеспечивающего наличие и отсутствие контакта между ними. Задача, которая раньше требовала для решения разрушения веполя, превратилась в задачу на его достройку. Что же это за поле? Магическое слово МАТХЭМ не помогло…

В трудной работе прошли обычные четыре часа занятий. Но после обеда ребята снова вернулись в класс. Очень уж им хотелось узнать, что дальше будет с нашей задачей. И мы продолжаем. Четвертый плакат:


4.1. Маленьких человечков все рисуют с удовольствием. Получается у ребят примерно одно и то же: ряд человечков электрода. За одного человечка этой шеренги зацепились красные «горячие» человечки дуги и сжигают его. Когда сожгли одного, хватаются за следующего. Это картинка – «было».


А теперь по правилам шага 4.1 нужно эту картинку переделать: так перестроить человечков, чтобы их вредное действие исчезло. Как это сделать? Все в затруднении.

Преподаватель вызывает к доске добровольцев для изображения человечков в живую. Все желают участвовать в эксперименте, но Преподаватель оставляет только шестерых. Четверо изображают человечков электрода, а двое – человечков дуги. «Человечки катода» перед проблемой – противоречием: они должны держать «человечков дуги», но у тех очень горячие руки, они обжигают.


– Нужно передавать человечков дуги из рук в руки, как печёную картошку у костра!

Воспоминания о наших вечерних огоньках, когда на костре по традиции печётся картошка, самые приятные, и идея сразу всем понятна:

– Нужно, чтобы точка контакта непрерывно перемещалась по электроду! И можно сразу представить, как эту идею реализовать.

• Электрод должен перемещаться, например, вращаться!

• Лучше, чтобы двигался не электрод, а дуга – она ведь легче! – говорит Миша.

Он прав – двигать дугу с позиций ТРИЗ предпочтительнее. Но как?


4.2. Шаг назад от ИКР делают следующим образом. Часто, хотя и не всегда, из анализа задачи бывает ясно, как должна выглядеть «идеальная система», а вопрос только в том, как её получить. В таких случаях рисуют такой идеал, а потом вносят минимальное отклонение от результата. Например, если две детали в конечном итоге соприкасаются, надо на этом шаге ввести между ними маленький зазор. Возникает новая микрозадача – как ликвидировать этот «зазорчик»? Иногда она легко решается и подсказывает решение общей задачи. А как изобразить ИКР у нас?


– На электроде горит дуга, а он не разрушается.

– А теперь внесем маленькое разрушение. Дуга все-таки «съела» одну частицу, одного человечка электрода. Что нужно сделать, чтобы вернуть его на место?

– Пусть на его место встанет какой-то другой человечек, из запасных или из…

– Из ресурсов! Тогда все будет как было.

– А как обеспечить такую возможность взаимного замещения человечков?

– Человечки могут менять места только в жидкости. А электрод нельзя сделать жидким, он тогда сразу вытечет.

Преподаватель: – Вообще-то можно. Есть специальный материал для электродов, который при нагреве покрывается на поверхности тонким слоем электропроводного жидкого окисла. И это отлично «работает». Вот только материал этот очень дорог и имеет много других недостатков.

– Нужно просто сделать электрод в виде чашки с жидкостью и перевернуть электрод вверх ногами, – медленно тянет Игорь. – Пусть электрод будет внизу, а разрезаемый металл вверху!

Эту идею стоит записать и продумать отдельно. Она новая, не совпадает с имеющимся у Преподавателя контрольным ответом. Вполне возможно, что это изобретение[2]!

Вообще, в четвертой части АРИЗЕНКА от каждого шага можно ждать новой идеи. Если в первых трёх частях идёт анализ и прояснение задачи, то в четвёртой части – собственно поиск решений. Но в отличие от аналитической части, где выполнение каждого шага даёт гарантированное сужение поля поиска, в «решательной» части далеко не все шаги и не всегда могут дать результат.

Ребята долго обсуждали возможность использования пустоты или смеси ресурсных веществ с пустотой. Вообще пустота – идеальный ресурс для изготовления икс-элемента. Её всегда достаточно, платить за неё не надо. Пустота – это не обязательно вакуум, это просто незанятое место, пространственный ресурс. Но пустота может быть и пузырьками газа в жидкости, и порами в твердом теле.

– А пена? Это смесь пустоты с водой!

– Правильно, только не обязательно с водой, с любой жидкостью. Для пустоты есть даже свои маленькие человечки – «пустячки». А есть ли «пустота» в нашей задаче? Электрод плазмотрона – массивная деталь, она сделана из сплошного материала. А если…


И вот на рисунке новый электрод с пустотой – стакан, охлаждаемый снаружи. Дуга опирается на внутреннюю поверхность стакана. Если привлечь ресурс – поток воздуха или газа, который будет вращаться и непрерывно подгонять дугу, не давая ей задерживаться ни на миг, дуга не успеет «сжечь» человечков электрода. Правда, поток воздуха или газа может и «сдуть» дугу.

4.6. Нельзя ли использовать электрические или магнитные поля или их взаимодействие? Эти поля выглядят очень перспективными. Все вещества содержат электроны, ионы, то есть человечков, «послушных» электрическому и магнитному полю. Правда, в обычном состоянии они «замкнуты» друг на друга и электрического поля не очень-то слушаются, но их в принципе несложно «освободить». Как раз такой случай в нашей задаче – у нас поток плазмы, то есть ионов, подвластных электрическому и магнитному полю. Что из этого следует?


– Наверное можно перемещать дугу не воздухом, а с помощью электрического поля – как луч в телевизоре.

Большинство сначала скептически относятся к этим идеям, но сторонники использования поля не сдаются. Очень интересно – у ребят появилась уверенность, что раз ТРИЗ подсказывает идею, стоит за неё побороться!

– Можно использовать не только электрическое поле, но и магнитное. Может быть сверху стакана поместить магнит? Тогда силовые линии его будут действовать на плазму дуги, как на проводник с током. Правда? Это по правилу левой… или правой руки, – вспоминает неуверенно Света. На помощь ей приходит отличник (но совсем не зубрила) Женя:

– Если магнитные линии входят в ладонь, а вытянутые четыре пальца показывают направление тока в проводнике, то отогнутый большой палец укажет направление движения проводника. И ещё – продолжает он, можно обойтись без магнита. Нужно вокруг электрода намотать провод и пустить по нему ток, он и создаст магнитное поле!


Вот теперь решение получено, и именно то, которое Преподаватель запатентовал и проверил на практике.

Общая радость – ведь решена задача высокого уровня – на практике её решали десятилетиями, изобретатели медленно шли от одного небольшого улучшения к другому. Конечно, всё получилось не без помощи Преподавателей. Но помощь эта была методической, мы не подсказывали ребятам идеи, а только объясняли, как сделать тот или иной шаг, не позволяли уклоняться в сторону или раньше времени бросить решение. Но со временем эта помощь станет ненужной, ребята сами смогут пользоваться сложным, но могущественным инструментом решения задач, инструментом мышления.

Сегодня мы решали задачу почти семь часов. Много? Но задачи такого уровня, как мы уже говорили, решаются десятилетиями. Поэтому сколько бы ни было потрачено времени на анализ задачи по АРИЗ – час, два, три, неделя даже – всё равно это немного. И решать задачу нужно спокойно, не торопясь, всё равно выигрыш во времени огромный.

2

Зимой после Летней школы Преподаватели помогли Игорю подготовить и послать заявку на изобретение. Заявка была отправлена на экспертизу в Институт электросварки, где написали отрицательный отзыв, на основании которого эксперт прислал решение об отказе в выдаче авторского свидетельства. Игорь в это время уже окончил школу и служил в армии. Документы пришли во Дворец пионеров и были благополучно потеряны. А через некоторое время выяснилось, что из Института электросварки на это изобретение была подана заявка, и на неё было выдано авторское свидетельство. Игоря просто ограбили…

Воображайте-2. Полигон для мозгов

Подняться наверх