Читать книгу Hydrogeology, Chemical Weathering, and Soil Formation - Allen Hunt - Страница 34
REFERENCES
Оглавление1 Aandahl, A. R. (1948). The characterization of slope positions and their influence on the total nitrogen content of a few virgin soils of western Iowa. Soil Science Society of America Proceedings, 13, 449–454.
2 Ahnert, F. (1967). The role of the equilibrium concept in the interpretation of landforms of fluvial erosion and deposition. In P. Macra (Ed.), L’evolution des versants (pp. 23–41). Liège: L’Université de Liège.
3 Amundson, R., & Jenny, H. (1991). The place of humans in the state factor theory of ecosystems and their soils. Soil Science, 151, 99–109.
4 Amundson, R., & Jenny, H. (1997). On a state factor model of ecosystems. BioScience, 47, 536–543.
5 Amundson, R., Berhe, A. A., Hopmans, J. W., Olson, C., Sztein, A. E., & Sparks, D. L. (2015). Soil and human security in the 21st century. Science, 348, 1261071. doi:10.1126/science.1261071
6 Armstrong, A. D. (1980). Soils and slopes in a humid temperate environment: A simulation study. Catena, 7, 327–338.
7 Banwart, S. A., Bernasconi, S. M., Blum, W. E. H., de Souza, D. M., Chabaux, F., Duffy, C., et al. (2017). Soil functions in Earth’s Critical Zone: Key results and conclusions. Advances in Agronomy, 142, 1–27.
8 Barton, C. M., Ullah, I. I. T., Bergin, S. M., Sarjoughian, H. S., Mayer, G. R., Bernabeu‐Auban, J. E., et al. (2016). Experimental socioecology: Integrative science for Anthropocene landscape dynamics. Anthropocene, 13, 34–45.
9 Birkeland, P. W. (1990). Soil–geomorphic research: A selective review. Geomorphology, 3, 207–224.
10 Birkeland, P. W. (1999). Soils and geomorphology, 3rd ed. Oxford: Oxford University Press.
11 Blume, H.‐P. (1968). Die pedogenetische Deutung einer Catena durch die Untersuchung der Bodendynamik. Transactions of the Ninth International Congress of Soil Science, Adelaide, 4, 441–449.
12 Blume, H.‐P., & Schlichting, E. (1965). The relationships between historical and experimental pedology. In E. G. Hallsworth & D. V. Crawford (Eds.), Experimental Pedology (pp. 340–353). London: Butterworths.
13 Bockheim J. G., & Gennadiyev, A. N. (2010). Soil‐factorial models and Earth‐system science: A review. Geoderma 159, 243–251.
14 Brevik, E. C., Calzolari, C., Miller, B. A., Pereira, P., Kabala, C., Baumgarten, A., & Jordán, A. (2016). Soil mapping, classification, and modeling: History and future directions. Geoderma, 264, 256–274.
15 Brevik, E. C., & Cerdà, A. (2016). History of soil science. In R. Lal (Ed.), Encyclopedia of soil science, 3rd ed. (pp. 1093–1097). Boca Raton, Florida: CRC Press.
16 Brevik, E. C., & Hartemink, A. E. (2010). Early soil knowledge and the birth and development of soil science. Catena, 83, 23–33.
17 Brillante, L., Mathieu, O., Lévêque, J., van Leeuwenc, C., & Boisa, B. (2017). Water status and must composition in grapevine cv. Chardonnay with different soils and topography and a mini meta‐analysis of the δ13C/water potentials correlation. Journal of the Science of Food and Agriculture, 98, 691–697.
18 Brown, D. J. (2006). A historical perspective on soil–landscape modeling. In S. Grunwald (Ed.), Environmental soil–landscape modeling: Geographic information technologies and pedometrics (pp. 61–103). Boca Raton, Florida: CRC Press.
19 Brown, D. J., Clayton, M. K., & McSweeney, K. (2004). Potential terrain controls on soil color, texture contrast and grain‐size deposition for the original catena landscape in Uganda. Catena, 122, 51–72.
20 Büdel, J. (1982). Climatic geomorphology, transl. by L. Fischer & D. Busche. Princeton, NJ: Princeton University Press.
21 Buol, S. W., Hole, F. D., and McCracken, R. J. (1980). Soil Genesis and Classification, 2nd ed. Ames: Iowa State University Press.
22 Bushnell, T. M. (1942). Some aspects of the soil catena concept. Soil Science Society of America Proceedings, 7, 466–476.
23 Bushnell, T. M. (1946). The catena cauldron. Soil Science Society of America Proceedings, 10, 335–340.
24 Chadwick, O. A., & Chorover, J. (2001). The chemistry of pedogenic thresholds. Geoderma, 100, 321–353.
25 Chorover, J., Kretzschmar, R., Garcia‐Pichel, F., and Sparks, D. L. (2007). Soil biogeochemical processes within the Critical Zone. Elements, 3, 321–326.
26 Cole, L. C. (1958). The ecosphere. Scientific American, 198, 83–96.
27 Conacher, A. J., & Dalrymple, J. B. (1977). The nine‐unit land‐surface model: An approach to pedogeomorphic research. Geoderma, 18, 1–154.
28 Darwin, C. R. (1881). The formation of vegetable mould through the action of worms, with observations on their habits. London: John Murray.
29 Dokuchaev, V. V. (1880). Protocol of the meeting of the branch of geology and mineralogy of the St. Petersburg Society of Naturalists. [Translated by the Department of Soils and Plant Nutrition, University of California, Berkeley and cited by Amundson & Jenny (1997)]. Transactions of the St. Petersburg Society of Naturalists, XII, 65–97.
30 Dokuchaev, V. V. (1883). Russian Chernozem: Selected Works of V. V. Dokuchaev, vol. 1. Jerusalem: Israel Program for Scientific Translations (translated in 1967).
31 Dokuchaev, V. V. (1899). Report to the Transcaucasian Statistical Committee on Land Evaluation in General and Especially for the Transcaucasia. Horizontal and Vertical Soil Zones (Tipogr. kantselyarii Glavnonachal’stvuyush‐chego grazhdanskoi chast’yu na Kavkaze, Tiflis, 1899) [in Russian].
32 Effland, A. B. W., & Effland, W. R. (1992). Soil geomorphology studies in the U.S. Soil Survey Program. Agricultural History, 66, 189–212.
33 Fallou, F. A. (1862). Pedologie; oder allgemeine und besondere Bodenkunde. Dresden: Schönfeld Buchhandlung.
34 Finke, P. A., & Hutson, J. L. (2008). Modelling soil genesis in calcareous loess. Geoderma, 145, 462–479.
35 Fissore, C., Dalzell, B. J., Berhe, A. A., Voegtle, M., Evans, M, & Wu, A. (2017). Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena, 149, 140–149.
36 Fleming, P. A., Anderson, H., Prendergast, A. S., Bretz, M. R., Valentine, L. E., & Hardy, G. E. S. (2014). Is the loss of Australian digging mammals contributing to a deterioration in ecosystem function? Mammal Review, 44, 94–108.
37 Florinski, I. V. (2011). The soil formation equation: Imaginary priority of Hans Jenny. Pedometron, 30, 1–3.
38 Florinski, I. V. (2012). The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian Soil Science, 45, 445–451.
39 Gabet, E. J., Perron, J. T., & Johnson, D. L. (2014). Biotic origin for Mima mounds supported by numerical modeling. Geomorphology, 206, 58–66.
40 Gennadiyev, A. N., & Bockheim, J. G. (2006). Development of the soil cover pattern and soil catena concepts. In B. P. Warketin (Ed.), Footprints in the soil: People and ideas in soil history (pp. 167–186). Amsterdam and Oxford: Elsevier.
41 Gillard, A. (1969). On terminology of biosphere and ecosphere. Nature, 223, 500–501.
42 Glazovskaya, M. A. (1963). On geochemical principles of the classification of natural landscapes. International Geology Review, 5, 1403–1431.
43 Glazovskaya, M. A. (1968). Geochemical landscapes and geochemical soil sequences. Transactions of the Ninth International Congress of Soil Science, Adelaide, 4, 303–312.
44 Grealish, G. J., & Fitzpatrick, R. W. (2014). Assisting nonsoil specialists to identify soil types for land management: An approach using a soil identification key and toposequence models. Soil Use and Management, 30, 251–262.
45 Grunwald, S. (2006). What do we really know about the space–time continuum of soil–landscapes? In S. Grunwald (Ed.), Environmental soil–landscape modeling: Geographic information technologies and pedometrics (pp. 3–36). Boca Raton, Florida: CRC Press.
46 Hallsworth, E. G. (1965). The relationship between experimental pedology and soil classification. In E. G. Hallsworth & D. V. Crawford (Eds.), Experimental Pedology (pp. 354–374). London: Butterworths.
47 Hartemink, A. E. (2016). The definition of soil since the early 1800s. Advances in Agronomy, 137, 73–126.
48 Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., & Finkel, R. C. (1997). The soil production function and landscape equilibrium. Nature, 388, 358–361.
49 Hilgard, E. W. (1860). Report on the geology and agriculture of Mississippi. Jackson, MS: E. Barksdale, State Printer.
50 Hole, F. D. (1961). A classification of pedoturbation and some other processes and factors of soil formation in relation to isotropism and anisotropism. Soil Science, 91, 375–377.
51 Holliday, V. T., 2006. A history of soil geomorphology in the United States. In B. P. Warkentin (Ed.), Footprints in the soil: People and ideas in soil history (pp. 187–254). Amsterdam: Elsevier Press.
52 Hoosbeek, M. R., & Bryant, R. B. (1992). Towards the quantitative modeling of pedogenesis: A review. Geoderma, 55, 183–210.
53 Huggett, R. J. (1973). Soil landscape systems: Theory and field evidence. (Ph.D. thesis). University of London.
54 Huggett, R. J. (1975). Soil landscape systems: A model of soil genesis. Geoderma, 13, 1–22.
55 Huggett, R. J. (1976). Lateral translocation of soil plasma through a small valley basin in the Northaw Great Wood, Hertfordshire. Earth Surface Processes, 1, 99–109.
56 Huggett, R. J. (1991). Climate, Earth processes and Earth history. Heidelberg: Springer.
57 Huggett, R. J. (1995). Geoecology: An evolutionary approach. London: Routledge.
58 Huggett, R. J. (1997). Environmental change: The evolving ecosphere. London: Routledge.
59 Huggett, R. J. (1998). Soil chronosequences, soil development, and soil evolution: A critical review. Catena, 32, 155–172.
60 Huggett, R. J. (1999). Ecosphere, biosphere, or Gaia? What to call the global ecosystem. Global Ecology and Biogeography, 8, 425–431.
61 Huggett, R. J. (2017). Fundamentals of geomorphology, 4th ed. Abingdon: Routledge.
62 Huggett, R. J., & Cheesman, J. E. (2002). Topography and the environment. Harlow, Essex: Prentice Hall.
63 Iticha, B., & Takele, A. (2018). Soil–landscape variability: Mapping and building detail information for soil management. Soil Use and Management, 34, 111–123.
64 Jenny, H. (1930). An equation of state for soil nitrogen. Journal of Physical Chemistry, 34, 1053–1057.
65 Jenny, H. (1941). Factors of soil formation: A system of quantitative pedology. New York: McGraw‐Hill.
66 Jenny, H. (1946). Arrangement of soil series and types according to functions of soil forming factors. Soil Science, 61, 375–391.
67 Jenny, H. (1958). The role of the plant factor in pedogenic functions. Ecology, 39, 5–16.
68 Jenny, H. (1961a). Derivation of state factor equations of soil and ecosystems. Soil Science Society of America Proceedings, 25, 385–388.
69 Jenny, H. (1961b). E. W. Hilgard and the birth of modern soil science. Pisa, Italy: Collana della Rivista ‘Agrochimica’ and Berkeley, California: Farallon.
70 Jenny, H. (1980). The soil resource: Origin and behaviour (Ecological Studies, vol. 37). New York: Springer.
71 Johnson, D. L. (1985). Soil thickness processes. In P. Jongerius (Ed.), Soils and geomorphology (Catena Supplement 6, pp. 29–40). Braunschweig: Catena Verlag.
72 Johnson, D. L. (1990). Biomantle evolution and the redistribution of earth materials and artifacts. Soil Science 149, 84–102.
73 Johnson, D. L. (2002). Darwin would be proud: Bioturbation, dynamic denudation, and the power of theory in science. Geoarchaeology: An International Journal, 17, 7–40.
74 Johnson, D. L., Domier, J. E. J., & Johnson, D. N. (2005a). Reflections on the nature of soil and its biomantle. Annals of the Association of American Geographers, 95, 11–31.
75 Johnson, D. L., Domier, J. E. J., & Johnson, D. N. (2005b). Animating the biodynamics of soil thickness using process analysis: A dynamic denudation approach to soil formation. Geomorphology, 67, 23–46.
76 Johnson, D. L., & Hole, F. D. (1994). Soil formation theory: A summary of its principal impacts on geography, geomorphology, soil–geomorphology, Quaternary geology and paleopedology. In R. Amundson (Ed.), Factors of soil formation: A fiftieth anniversary retrospective (Soil Science Society of America Special Publication 33, pp. 111–126). Madison, WI: Soil Science Society of America.
77 Johnson D. L., Keller, E. A., & Rockwell T. K. (1990). Dynamic pedogenesis: New views on some key soil concepts, and a model for interpreting Quaternary soils. Quaternary Research, 33, 306–319.
78 Johnson, D. L., & Schaetzl, R. J. (2015). Differing views of soil and pedogenesis by two masters: Darwin and Dokuchaev. Geoderma, 237–238, 176–189.
79 Johnson D. L., & Watson‐Stegner, D. (1987). Evolution model of pedogenesis. Soil Science, 143, 349–366.
80 Kline, J. R. (1973). Mathematical simulation of soil–plant relationships and soil genesis. Soil Science, 115, 240–249.
81 Krupenikov, I. A. (1992). History of soil science: From its inception to the present. New Delhi: Oxonian Press.
82 Leguédois, S., Séré, G., Auclerc, A., Cortet, J., Huot, H., Ouvrard, S., et al. (2016). Modelling pedogenesis of Technosols. Geoderma, 262, 199–212.
83 Li, X., McCarty, G. W., Karlenc, D. L., & Cambardellac, C. A. (2018). Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields. Catena, 120, 222–232.
84 Lin, H. S. (2003). Hydropedology. Vadose Zone Journal, 2, 1–11.
85 Lin, H. S. (2011). Three principles of soil change and pedogenesis in time and space. Soil Science Society of America Journal, 75, 2049–2070.
86 Lin, H. S. (2012). Hydropedology: Addressing fundamentals and building bridges to understand complex pedologic and hydrologic interactions. In H. Lin (Ed.), Hydropedology: Synergistic integration of soil science and hydrology (pp. 3–40). Amsterdam: Academic Press.
87 Ma, Y., Lia, X., Guo, Li, & Lin, H. (2017). Hydropedology: Interactions between pedologic and hydrologic processes across spatiotemporal scales. Earth‐Science Reviews, 171, 181–195.
88 Major, J. (1951). A functional factorial approach to plant ecology. Ecology, 32, 392–412.
89 Mattson, S. (1938). The constitution of the pedosphere. Annals of the Agricultural College of Sweden, 5, 261–276.
90 McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117, 3–52.
91 McSweeney, K., Slater, B. K., Hammer, R. D., Bell, J. C., Gessler, P. E., & Petersen, G. W. (1994). Towards a new framework for modeling the soil–landscape continuum. In R. Amundson, J. Harden, & M. Singer (Eds.), Factors of soil formation: A fiftieth anniversary retrospective (Soil Science Society of America Special Publication Number 33, pp. 127–145). Madison, WI: Soil Science Society of America.
92 Milne, G. (1935a). Some suggested units of classification and mapping, particularly for East African soils. Soil Research, 4, 183–198.
93 Milne, G. (1935b). Composite units for the mapping of complex soil associations. Transactions of the Third International Congress of Soil Science, Oxford, England, 1935. 1, 345–7.
94 Milne, G. (1936). Normal erosion as a factor in soil profile development. Nature, 138, 548–549.
95 Minasny, B., & McBratney, A. B. (1999). A rudimentary mechanistic model for soil production and landscape development. Geoderma, 90, 3–21.
96 Minasny, B., McBratney, A. B., & Salvador‐Blanes, S. (2008). Quantitative models for pedogenesis: A review. Geoderma, 144, 140–157.
97 Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57, 443–452.
98 Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5, 3–30.
99 Morison, C. G. T. (1949). The catena concept and the classification of tropical soils. In Proceedings of the First Commonwealth Conference on Tropical and Sub‐Tropical Soils, 1948 (Commonwealth Bureau of Soil Science, Technical Communication No. 46, pp. 124–128). Harpenden, England: Commonwealth Bureau of Soil Science.
100 Morison, C. G. T., Hoyle, A. C., & Hope‐Smith, J. F. (1948). Tropical soil–vegetation catenas and mosaics: A study in the south‐western part of the Anglo‐Egyptian Sudan. Journal of Ecology, 36, 1–84.
101 Muhs, D. R. (1982). The influence of topography on the spatial variability of soils in Mediterranean climates. In C.E. Thorn (Ed.), Space and time in geomorphology (pp. 269–284). London: George Allen & Unwin.
102 Muhs, D. R. (1984). Intrinsc thresholds in soil systems. Physical Geography, 5, 99–110.
103 National Research Council (2001). Basic research opportunities in Earth science. Washington, DC: National Academy Press.
104 Neustruev, S. S. (1915). On soil combination of plains and uplands [in Russian]. Pochvovednie [Soil Science], 1, 62–73.
105 Nikiforoff, C. C. (1959). Reappraisal of the soil. Science, 129, 186–196.
106 Odgers, N. P., McBratney, A. B., & Minasny, B. (2008). Generation of kth‐order random toposequences. Computers & Geosciences, 34, 479–490.
107 Parton, W. J., Schimel, D. S., Cole, C. V., & Ojima, D. S. (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173–1179.
108 Pawlika, Ł., & Šamonil, P. (2018). Soil creep: The driving factors, evidence and significance for biogeomorphic and pedogenic domains and systems – A critical literature review. Earth‐Science Reviews, 178, 257–278.
109 Peacock, E., & Fant, D. W. (2002). Biomantle formation and artifact translocation in upland sandy soils: An example from the Holly Springs National Forest, North‐Central Mississippi, U.S.A. Geoarchaeology: An International Journal, 17, 91–114.
110 Pereira, T. T. C., Almeida, I. C. C., de Oliveira, F. S., Schaefer, C. E. G. R., de Souza Pinheiro, L., & Matuk, F. A. (2018). Hydropedology of a high tableland with cerrado, Brazilian Central Plateau: The Frutal Catchment case study. Revista Brasileira de Ciência do Solo, 42, e0160523. https://dx.doi.org/10.1590/18069657rbcs20160523
111 Phillips, J. D. (1989). An evaluation of the state factor model of soil ecosystems. Ecological Modelling, 45, 165–177.
112 Phillips, J. D. (1993a). Progressive and regressive pedogenesis and complex soil evolution. Quaternary Research, 40, 169–176.
113 Phillips, J. D. (1993b). Stability implications of the state factor model of soils as a nonlinear dynamical system. Geoderma, 58, 1–15.
114 Phillips, J. D. (1998). On the relations between complex systems and the factorial model of soil formation (with discussion). Geoderma, 86, 1–21.
115 Phillips, J. D. (2001). The relative importance of intrinsic and extrinsic factors in pedodiversity. Annals of the Association of American Geographers, 91, 609–621.
116 Phillips, J. D. (2013). Nonlinear dynamics, divergent evolution, and pedodiversity. In J. J. Ibãnez & J. Bockheim (Eds.), Pedodiversity (pp. 59–78). Boca Raton, Florida: CRC Press.
117 Phillips, J. D. (2017). Soil complexity and pedogenesis. Soil Science, 182, 117–127.
118 Polynov, B. B. ( 1935). Types of weathering crust. Transactions of the Third International Congress of Soil Science, Oxford, England, 1935, 1, 327–330.
119 Polynov, B. B. (1937). The cycle of weathering. Translated from Russian by A. Muir; foreword by W. G. Ogg. London: Thomas Murby.
120 Quijano, J., & Lin H. (2014). Entropy in the critical zone: A comprehensive review. Entropy, 16, 3482–3536.
121 Rasmussen, C., Pelletier, J. D., Troch, P. A., Swetnam, T. L., & Chorover, J. (2015). Quantifying topographic and vegetation effects on the transfer of energy and mass to the critical zone. Vadose Zone Journal, 14(11). doi: https://doi.org/10.2136/vzj2014.07.0102
122 Rasmussen, C., Southard, R. J., & Horwath, W. R. (2005). Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Science Society of America Journal, 69, 1266–1274.
123 Rasmussen, C., & Tabor, N. J. (2007). Applying a quantitative pedogenic energy model across a range of environmental gradients. Soil Science Society of America Journal, 71, 1719–1729.
124 Regan, E. J. (1977). A natural energy basis for soils and urban growth in Florida (master’s thesis). University of Florida.
125 Richter, D. deB., & Yaalon, D. H. (2011). “The Changing Model of Soil” revisited. Soil Science Society of America Journal, 76, 766–778.
126 Robinson, G. W. (1936). Normal erosion as a factor in soil profile development. Nature, 137, 950.
127 Rode, A. A. (1947). The soil‐forming process and soil evolution. Jerusalem: Israel Program for Scientific Translations (Translated into English by J. S. Joffe, 1961).
128 Roy, A. G., Jarvis, R. S., & Arnett, R. R. (1980). Soil‐slope relationships within a drainage basin. Annals of the Association of American Geographers, 70, 397–412.
129 Ruhe, R. V. (1960). Elements of the soil landscape. Transactions of the Seventh International Congress of Soil Science, Madison, 4, 165–170.
130 Ruhe, R. V. (1975). Review of “Pedology, Weathering and Geomorphological Research” by P. W. Birkeland. Geoderma, 14, 176–177.
131 Ruhe, R. V., & Walker, P. H. (1968). Hillslope models and soil formation: I. Open systems. Transactions of the Ninth International Congress of Soil Science, Adelaide, 4, 551–560.
132 Runge, E. C. A. (1973). Soil development sequences and energy models. Soil Science, 115, 183–193.
133 Saco, P. M., & Moreno‐de las Heras, M. (2013). Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resources Research, 49, 115–126.
134 Salvador‐Blanes, S., Minasny, B., and McBratney, A. B. (2007). Modelling long‐term in situ soil profile evolution: Application to the genesis of soil profiles containing stone layers. European Journal of Soil Science, 58, 1535–1548.
135 Sasscer, D. C., Jordan, C. F., & Kline, J. R. (1971). A mathematical model of tritiated and stable water movement in and old‐field system. In D. J. Nelson (Ed.), Radionuclides in Ecosystems. Proceedings of the Third National Symposium on Radioecology (pp. 915–923). CONF‐710501‐P1, US Atomic Energy Commission.
136 Schaetzl, R. J. (2013). Catenas and soils. In J. Shroder (Ed. in Chief), Pope, G.A. (Ed.), Treatise on geomorphology: Vol. 4. Weathering and soils geomorphology (pp. 145–158). San Diego, CA: Academic Press.
137 Shaw, C. F. (1930). Potent factors in soil formation. Ecology, 11, 239–245.
138 Shepard, C., Schaap, M. G, Pelletier, J. D., & Rasmussen, C. (2017). A probabilistic approach to quantifying soil property change through time integration of energy and mass input. SOIL, 3, 67–82.
139 Simonson, R. W. (1959). Outline of a generalized theory of soil genesis. Soil Science Society of America Proceedings, 23, 152–156.
140 Simonson, R. W. (1968). Concept of soil. Advances in Agronomy 20, 1–47.
141 Sommer, M. (2006). Influence of soil pattern on matter transport in and from terrestrial biogeosystems: A new concept for landscape pedology. Geoderma, 133, 107–123.
142 Sommer, M., & Schlichting, E. (1997). Archetypes of catenas in respect to matter a concept for structuring and grouping catenas. Geoderma, 76, 1–33.
143 Stephens, C. G. (1947). Functional synthesis in pedogenesis. Transactions of the Royal Society of South Australia, 71, 168–181.
144 Stockmann, U., Minasny, B., & McBratney, A. B. (2011). Quantifying processes of pedogenesis. Advances in Agronomy, 113, 1–74.
145 Suess, E. (1875). Die Entstehung der Alpen. Wien: Wilhelm Braunmüller.
146 Suess, E. (1883–1909). Das Antlitz der Erde, 5 vols. Wien: Gustav Freytag.
147 Tandarich, J. P., Darmody, R. G., Follmer, L. R., & Johnson, D. L. (2002). Historical development of soil and weathering profile concepts from Europe to the United States of America. Soil Science Society of America Journal, 66, 335–346.
148 Targulian, V. O., & Sokolova, T. A. (1996). Soil as a bio‐abiotic natural system: A reactor, memory and regulator of biospheric interactions. Eurasian Soil Science, 29, 34–47.
149 Temme, A.J.A.M., & Vanwalleghem, T. (2016). LORICA – A new model for linking landscape and soil profile evolution: Development and sensitivity analysis. Computers & Geosciences, 90, 131–143.
150 Troeh, F. R. (1964). Landform parameters correlated to soil drainage. Soil Science Society of America Proceedings, 28, 808–812.
151 Vanwalleghem, T., Stockmann, U., Minasny, B., & McBratney, A. B. (2013). A quantitative model for integrating landscape evolution and soil formation. Journal of Geophysical Research: Earth Surface, 118, 331–347.
152 Verboom, W. H., & Pate, J. S. (2013). Exploring the biological dimension to pedogenesis with emphasis on the ecosystems, soils and landscapes of southwestern Australia. Geoderma, 211–212, 154–183.
153 Vernadsky, V. I. (1926). Biosfera. Leningrad: Nauchoe Khimikoteknicheskoe Izdatelstvo.
154 Vernadsky, V. I. (1929). La biosphère. Paris: Félix Alcan.
155 Vernadsky, V. I. (1998). The biosphere, translated by David B. Langmuir. Heidelberg: Springer‐Verlag.
156 Volobuyev, V. R. (1963). Ecology of soils. Academy of Sciences of the Azerbaidzan SSR. Institute of Soil Science and Agrochemistry. Israel Program for Scientific Translations, Jerusalem (Translated into English by A. Gourevich, 1964).
157 Vreeken, W. J. (1973). Soil variability in small loess watersheds: Clay and organic matter content. Catena, 2, 321–336.
158 Wackett, A. A., Yoo, K., Amundson, R., Heimsath, A. M., & Jelinski, N. A. (2018). Climate controls on coupled processes of chemical weathering, bioturbation, and sediment transport across hillslopes. Earth Surface Processes and Landforms, 43, 1575–1590 doi: 10.1002/esp.4337
159 Wilde, S. A. (1946). Forest soils and forest growth. Waltham, MA: Chronica Botanica.
160 Wilding, L. P., & Lin, H. (2006). Advancing the frontiers of soil science towards a geoscience. Geoderma, 131, 257–274.
161 Willgoose, G. (2018). Principles of soilscape and landscape evolution. Cambridge: Cambridge University Press.
162 Yaalon, D. H. (1975). Conceptual models in pedogenesis: Can soil‐forming functions be solved? Geoderma, 14, 189–205.
163 Yaalon, D. H., & Yaron, B. (1966). Framework for man‐made soil changes: An outline of metapedogenesis. Soil Science, 102, 272–277.
164 Yoo, K., Amundson, R., Heimsath, A. M., Dietrich, W. E., & Brimhall, G. H. (2007). Integration of geochemical mass balance with sediment transport to calculate rates of soil chemical weathering and transport on hillslopes. Journal of Geophysical Research: Earth Surface, 112, F02013.
165 Zakharov, S. A. (1927). A course of soil science [in Russian]. Moscow: Gosizdat.
166 Zinck, J. A., Metternicht, G., Bocco Verdinelli, G. H. R., & Del Valle, H. F. (Eds.) (2016). Geopedology: An integration of geomorphology and pedology for soil and landscape studies. Cham: Springer.