Читать книгу Mathématiques et Mathématiciens: Pensées et Curiosités - Alphonse Rebière - Страница 6
NOTIONS PRIMITIVES
ОглавлениеOn trouvera peut-être étrange que la géométrie[2] ne puisse définir aucune des choses qu'elle a pour principaux objets; car elle ne définit ni le mouvement, ni le nombre, ni l'espace; et cependant ces trois choses sont celles qu'elle considère particulièrement... Mais on n'en sera pas surpris, si l'on remarque que cette admirable science ne s'attachant qu'aux choses les plus simples, cette même qualité qui les rend dignes d'être ses objets, les rend incapables d'être définies; de sorte que le manque de définition est plutôt une perfection qu'un défaut, parce qu'il ne vient pas de leur obscurité, mais au contraire de leur extrême évidence...
...........................
... Quand elle (la géométrie) est arrivée aux premières vérités connues, elle s'arrête là et demande qu'on les accorde, n'ayant rien de plus clair pour les prouver; de sorte que tout ce que la géométrie propose est parfaitement démontré, ou par la lumière naturelle, ou par les preuves. De là vient que si cette science ne définit et ne démontre pas toutes choses, c'est par cette seule raison que cela nous est impossible.
...........................
... Se tenir dans ce milieu de ne point définir les choses claires et entendues de tous les hommes et de définir toutes les autres; et de ne point prouver toutes les choses connues des hommes, et de prouver toutes les autres. Contre cet ordre pèchent également ceux qui entreprennent de tout définir et de tout prouver, et ceux qui négligent de le faire dans les choses qui ne sont pas évidentes d'elles-mêmes.
Pascal.
Il est des notions premières qu'on est en droit de supposer aux élèves. Elles serviront à leur donner d'autres connaissances. Nous ne chercherons pas à les éclaircir elles-mêmes, parce que les explications n'ont pour but que de ramener ce que l'on ne connaît pas à ce que l'on connaît et qu'il faut par conséquent admettre a priori certaines notions, certaines idées par leur simple énoncé, ou par la simple dénomination par laquelle on les a désignées.
Duhamel.
La figure est inhérente à l'objet, le nombre dépend de l'unité.
C'est dans la sphère propre de l'esprit, et bien au delà des résultats de l'observation, non dans ces résultats eux-mêmes, qu'il faut chercher la véritable source des idées géométriques, quoique leur point d'application soit plus bas, dans la sphère expérimentale, là où la matière et l'esprit se joignent et où les idées, prenant corps, nous deviennent en quelque sorte palpables.
Le monde idéal a son autonomie, ses lois distinctes, comme le monde physique. Mais ils s'appellent l'un l'autre, l'harmonie règne entre eux, jusqu'à un haut degré d'approximation qui d'ailleurs nous échappe.
Boussinesq.
L'origine des notions mathématiques a donné lieu à des controverses encore pendantes parmi les philosophes. Pour les uns, nombres et figures sont des types créés de toutes pièces par l'esprit, et qui s'imposent aux choses de l'expérience, en vertu d'une mystérieuse concordance entre la pensée et la réalité extérieure. Pour les autres, au contraire, nombres et figures ne font pas exception à cette loi générale d'après laquelle toute connaissance dériverait, soit directement, soit indirectement, de l'expérience sensible. Dans un cas, les notions mathématiques seraient des modèles; dans l'autre, elles seraient des copies.
Ce n'est pas le lieu d'entrer dans cette controverse et de peser les raisons invoquées de part et d'autre. Il nous suffira de constater deux faits: en premier lieu, quelque opinion qu'on professe sur l'origine des notions mathématiques, on ne contestera pas qu'elles ne sont pas des représentations absolument exactes des réalités extérieures. L'unité est divisible en parties rigoureusement égales; il n'en est pas ainsi d'un objet réel; jamais la moitié, le quart, le dixième de cet objet ne sera rigoureusement égal à l'autre moitié, à chacun des trois autres quarts, à chacun des neuf autres dixièmes, et même plus les subdivisions se multiplieront, plus l'inégalité réelle des parties augmentera. Le cercle des géomètres a des rayons absolument égaux; jamais il n'en sera ainsi des rayons d'un cercle réel; tous les points d'une surface sphérique sont équidistants du centre; jamais il n'en sera ainsi des rayons d'une sphère matérielle. En second lieu, le mathématicien considère souvent des nombres et des figures dont il n'a jamais trouvé les modèles dans la réalité. Toute division d'un objet réel en parties égales a une limite que nos sens et nos instruments de précision, même les plus perfectionnés, sont impuissants à franchir; cette limite, la pensée du mathématicien la franchit aisément, et au delà des plus petites divisions possibles d'un objet, il conçoit d'autres divisions encore et toujours à l'infini; de même il est des limites à l'addition des objets; il n'en est pas à celle des unités mathématiques; la nature a bien vite cessé de fournir; la numération ne s'arrête jamais. De même en géométrie, si variées que soient les formes réalisées dans la nature, il en est dont le géomètre étudie les propriétés, sans les avoir jamais rencontrées dans le monde extérieur. Qui a vu un polygone régulier d'un millier de côtés?
Il résulte de ce double fait que, même dans le cas où l'esprit tirerait de l'expérience les premiers éléments dont il compose les notions mathématiques, il les élabore, les transforme, et ne tarde pas à s'affranchir des suggestions expérimentales. Il procède alors comme s'il les tirait de son propre fonds. Aussi, sans prendre ici part dans ce conflit de doctrines sur l'origine première des notions mathématiques, on peut et on doit considérer ces notions comme des constructions faites par l'esprit suivant des lois qu'il pose, constructions qui sont en partie, mais en partie seulement et imparfaitement reproduites par la réalité sensible.
Liard.
L'étendue n'existe qu'avec trois dimensions; mais, pour la considérer suivant la méthode analytique, on commence par la dépouiller de deux de ses dimensions et en la réduisant ainsi à une seule, on a l'idée de la ligne. Si, dans cette idée, on écarte tout rapport avec deux dimensions, on a l'idée de la ligne droite; car, quoiqu'une ligne courbe n'ait qu'une dimension, cependant l'idée de courbure suppose nécessairement la considération de deux dimensions. L'extrémité de la ligne forme le point, qui est la dernière abstraction de l'entendement dans la considération de l'étendue. La surface est l'étendue envisagée avec deux dimensions et si, dans cette idée, on fait entièrement abstraction de la troisième, on a l'idée du plan. Enfin l'étendue avec ses trois dimensions forme le solide.
Laplace.
L'espace étant nécessairement homogène, il suit qu'on peut le concevoir divisé en deux parties telles qu'on ne puisse rien dire de l'une qui ne puisse se dire également de l'autre; telles, de plus, que leur limite commune ait à chacune d'elles les mêmes rapports, soit qu'on la considère en son entier, soit qu'on n'en considère qu'une partie. C'est cette limite qu'on appelle plan, et le plan, comme l'espace, peut être conçu divisé en deux parties telles, qu'on ne puisse rien dire de l'une qui ne puisse se dire également de l'autre; telles, de plus, que leur limite commune ait à chacune d'elles les mêmes rapports, soit qu'on la considère en son entier, soit qu'on n'en considère qu'une partie...
Bertrand, de Genève.
La série des axiomes géométriques habituellement adoptée est à la fois insuffisante et surabondante. Elle est insuffisante parce que, en réalité, on suppose plusieurs faits non énoncés; mais elle est en même temps surabondante, parce qu'on y admet des faits qui peuvent être rigoureusement démontrés au moyen de ceux qu'il faut admettre comme axiomes....
Les axiomes de la géométrie peuvent se réduire à trois, savoir: celui de la distance et de ses propriétés essentielles, celui de l'augmentation indéfinie de la distance et celui de la parallèle unique.
de Tilly.
L'étude de la mécanique, succédant à la géométrie, peut être considérée comme le développement de trois idées fondamentales, qui existent dans l'esprit humain antérieurement à tout enseignement scientifique: ce sont les idées de force, de temps et de masse. Ces idées sont irréductibles et on ne peut pas plus définir la force, le temps ou la masse qu'on ne peut définir l'étendue.
Ch. Simon.
Quelque objet que les mathématiques considèrent, elles le dépouillent de toutes ses qualités sensibles, de toutes ses propriétés individuelles; bientôt il n'est plus qu'un rapport abstrait de nombre ou de grandeur: on désigne ce rapport par une lettre ou une ligne; l'objet lui-même est alors oublié, il cesse d'exister pour les mathématiques. Ces signes, arbitraires en apparence, sont l'unique objet de leurs méditations; c'est sur eux seuls qu'elles opèrent, et ce n'est qu'après être parvenu au dernier résultat que revenant sur leurs premières opérations, elles appliquent ce résultat à l'objet réel dont elles avaient cessé de s'occuper. Les vérités certaines, trouvées par cette méthode, paraissent au premier coup d'œil n'être que des vérités intellectuelles et abstraites: on a pu les prendre pour des propositions identiques, en oubliant que les combinaisons diverses des mêmes éléments ne sont pas une même chose. On serait encore plus tenté de croire qu'elles n'appartiennent point à la nature réelle. Mais ce serait une erreur: car elles sont des vérités réelles, si l'objet auquel vous les avez appliquées existe dans la nature tel que vous l'avez supposé.
Condorcet.