Читать книгу Цилиндропоршневая группа двигателей и компрессоров. 100% инновационных элементов ЦПГ - Анатолий Матвеевич Дружинин - Страница 5
Газодинамика и поршневые уплотнения двигателей и компрессоров
ОглавлениеРазработчики новых двигателей должны понять, что газодинамика поршневой машины это рабочая среда над поршнем, сжимаемая, например, в автомобильных цилиндрах до 8…20 МПа, которую заставляют работать, а она, эта среда, пытается прорваться через мыслимые и немыслимые микро, макро и просто гарантированные проектировщиками зазоры.
От того, как создаются и как реализуются газодинамические процессы в ДВС, во многом зависят все технико-экономические характеристики и экологические показатели двигателя. Насколько эффективно и стабильно проистекают газодинамические процессы в камере сгорания, создавая рабочее давление в цилиндре двигателя, каковы газодинамические потери на такте рабочий ход, зависит полнота срабатывания рабочего давления, величина полезной работы, мощность и эффективность. Поэтому проектирование всех элементов цилиндропоршневой группы, так или иначе находящихся под воздействием газодинамических процессов, в таком типе производства, как массовое в автомобилестроении и не только, должно учитывать газодинамические процессы, протекающие в верхней части поршня.
К сожалению, даже специалисты не уделяют поршневому уплотнению необходимого внимания. Более того, некоторые из них считают, что 2…3% газодинамических потерь незначительны для процессов, протекающих в двигателе. Но с этим трудно согласиться. Например, в двигателях КАМАЗ газодинамические потери составляют 1% от максимального давления 20 МПа в камере сгорания, т. е. 0,2 МПа. Такие потери ставят под сомнение целесообразность использования сложных и дорогих систем дополнительного наддува хотя бы потому, что широко рекламируемый «мягкий» наддув обеспечивает на впуске всего 0,025…0,055 МПа избыточного давления [2]. Следовательно, для наддува используется меньшее давление на впуске, которое может быть компенсировано сохранением свежего заряда воздуха при одном, но очень важном для данной ситуации условии – наличии качественного уплотнения между поршнем и цилиндром.
Какие нужны аргументы для доказательства того, что КПД современного двигателя, кроме всего прочего, напрямую зависит от полноты срабатывания рабочего давления? Разве не следует учитывать газодинамические потери на такте «рабочий ход», когда «наддув» уже не может повлиять на рабочий процесс? Очевидно следующее: чем меньше газодинамических потерь в цилиндре двигателя, тем большая часть рабочего давления реализуется в работу поршня.
С сожалением можно констатировать, что нормального поршневого уплотнения, которое действительно уплотняет пространство между поршнем и цилиндром и сводит на нет газодинамические потери или минимизирует их в допустимых пределах, в эксплуатации пока не существует. Большие газодинамические и механические потери, связанные с работой компрессионного кольца, серьезно отражаются на форме, размерах и характеристиках двигателя. Тем не менее, в общепринятых формулах расчета уплотнительных поршневых колец почему-то не учитывается влияние газодинамики на работу поршневых колец, работающих в зоне огромных рабочих давлений. Это не просто «упущение», а принципиальная ошибка.
Невозможно согласиться с тем, что газодинамика «помогает» собственным силам упругости кольца прижатию его к стенке цилиндра: «Уплотнение осуществляется благодаря прижатию кольца к стенке цилиндра силами упругости кольца и давления газов» [3]. Этот, как будто очевидный вывод еще надо было доказать. Если в учебнике заявлено, что газодинамика оказывает воздействие на поршневое кольцо, то логичнее было бы объяснить студентам, будущим специалистам, да и вообще специалистам, какое влияние оказывает и, самое главное, с какими силами. Это оказалось так просто сделать, но, в то же время, принципиально и в высшей степени необходимо. Доказательства столь важного вывода представлены в следующих материалах.