Читать книгу Происхождение стабильных элементов - Анатолий Трутнев - Страница 5

Глава I. Происхождения стабильных химических элементов
Результаты исследований

Оглавление

Согласно базовым принципам смоделированной системы все частицы, из которых состоят атома и молекулы представляют собой совокупности гравитонов, определенным образом расположенных в силовых нитях пространства. Двигаясь, гравитоны сжимают силовые нити в направлении движения. При этом выделяется энергия материи, законсервированная в силовых нитях в результате Большого взрыва. Эта энергия и разгоняет молекулы звездного газа, увеличивает степень сжатия силовых нитей пространства и повышает температуру внутри звезды.

В инфляционный период развития Вселенной в ней сформировалась Мировая сеть из силовых нитей пространства. Тогда же температура и связанная с нею степень сжатия силовых нитей достигли своего максимума. Затем Вселенная начала остывать, а степень сжатия уменьшаться. Когда Вселенная, охладилась до температуры 30000 К, она стала прозрачной для прохождения световых волн, Степень сжатия при этом снизилась до 10—18м и больше не увеличивалась и остается постоянной в пределах от 00 до 30000 К.

Степень сжатия силовых нитей пространства (R) это расстояние между двумя соседними силовыми нитями. С ростом температуры (Т) вещества оно уменьшается, а при охлаждении, наоборот возрастает.

                               T = R/ ks


где k– коэффициент связи между степенью сжатия и температурой, и он равен 0,3310—21



С ростом гравитационного сжатия в недрах звезд увеличивается температура звездного вещества и степень деформации (сжатия) силовых нитей внутри звездного пространства. При повышении в центральной части звезды температуры около 107 K степень сжатия силовых нитей составит 0,33 10—25 м (таблица1). Это несколько превышает степени сжатия их во внутриатомном пространстве атома водорода, в результате электрон преодолевает притяжение ядра и вылетает из атома. Образуется « бульон « из высоко энергичных и высоко скоростных протонов и электронов. Дальнейшее повышение температуры до 107 K и связанного с ней увеличения степеии сжатия силовых нитей до 0,22 10—25 м приводит к следующим процессам. Протоны поглощают электроны и превращаются в нейтроны. Затем протоны объединяются с нейтронами и образуют дейтроны. Как только степень сжатия достигнет величины равной таковой в ядре гелия, два дейтрона сливаются и образуют ядро гелия. Законсервированная в связях протон – нейтрон энергия пространства переходит в энергию материи и выделяется в виде ядерной энергии. Ядро гелия представляет собой первую энергетическую оболочку (q), входящую в состав ядер всех химических элементов (Рис.1a). Каждый нуклон в ядре находится в квантовом состоянии, обладает определённым количеством энергии и моментом вращения. Согласно принципа Паули, в одном состоянии могут находиться не более одного протона и одного нейтрона. Оболочка состоит из двух энергетических уровней: уровень протонов и уровень нейтронов. Она полностью заполнена нуклонами. Изотоп атома гелия с ядром 4He стабилен и имеет повышенную устойчивость. Вокруг ядра обращаются два электрона с антипаралельными спинами. Оба электрона находятся на самой низшей по энергии орбитали 1s2, граничная поверхность которой является симметрично-сферической. Внутри этой поверхности силы сжатия уравновешиваются силами расширения. Здесь электронная плотность достигает своего максимального значения. Степень деформации (сжатие) силовых нитей пространства до граничной поверхности высока и однородна, а за ней, то есть вокруг эффективного радиуса атома) очень незначительна, что делает химическую связь гелия с другими элементами трудно доступной.

По мере выгорания водорода в центре звезды усиливается гравитационное сжатие и при достижении степени сжатия силовых нитей до 0,16 10—25 м два ядра гелия начинают сближение и сливаются в определенном положении, образуя ядро изотопа бериллия 8Be. У изотопа атома бериллия две энергетические оболочки q и f. (Рис.1.b). В каждой оболочке находится по два протона и по два нейтрона, которые взаимодействуют с электронами, находящимися на орбиталях с различными энергетическими показателями. Электроны, управляемые протонами второй оболочки, находятся на орбитали 1s2 2s2 и обладают большей энергией, чем два других электрона. Они имеют высокую валентную способность, поэтому бериллий химически активный элемент. Из всех изотопов 8Be один стабилен. Его распространенность составляет 100%.

Когда в центре звезды температура достигнет 108 К, а степень сжатия силовых нитей составит 10—26 м, начинается сближение ядер бериллия


ядрами гелия. Сливаются ядра гелия в определенной последовательности и в результате три ядра гелия превращаются в одно ядро углерода 12C. Ядро этого изотопа углерода, как и ядро изотопа бериллия имеет две ядерные оболочки, но у него в этой оболочке находятся не два, а четыре протона (Рис.1.c). Изотоп стабилен и имеет большое распространение. Внешние электроны атома углерода занимают электронную орбиталь 2p, но пространственная ориентация внешнего электронного слоя при возбуждении атома делает возможным промотирование одного из спаренных электронов с орбитали 2s на орбиталь 2 p. В результате углерод образует обширные химические связи.

Ядра атома кислорода начинают формироваться в ядерной топке звезд, когда температура превысит 108 К, а степень сжатия силовых нитей составит 0,31 10—27 м. Образовываться они будут путем присоединения ядер гелия к ядрам углерода. Присоединение будет происходить направленно с образованием определенной формы ядра, при которой каждый протон будет взаимодействовать только с соседними нуклидами и с электронами определенной орбитали. Итогом этого процесса будет синтез изотопа кислорода 16O. Он стабилен и широко представлен в природе. после водорода и гелия. У него две ядерных оболочки. Во второй оболочке изотопа функционируют шесть протонов. (Рис.1. d). Четыре из них деформируют (сжимают) силовые нити пространства внешнего электронного слоя и создают пространственную направленность действия валентной орбитали 2p. Все это в совокупности делает кислород одним из самых агрессивных химических элементов. По химической активности кислород уступает только фтору.


Рис. 1. Схема образования ядер бериллия, углерода и кислорода путем слияния ядер гелия, b – ядро бериллия, с – ядро углерода, d – ядро кислорода


Истощение запасов атомов гелия и углеродв внутри звезды вызывает её гравитационное сжатие, что приводит к дальнейшему росту температуры и степени сжатия силовых нитей в её центре. При достижении степени сжатия 0.24 10—27 м начинается слияние ядер кислорода и ядер гелия. Ядра гелия присоединяются к ядрам кислорода таким образом, что в результате синтезируются ядра изотопа неона со своеобразной, только им присущей конфигурацией. У ядра атома неона 20Ne имеется две ядерных оболочки, но в отличие от ядер атомов других элементов, его вторая атомная оболочка полностью заполнена нуклидами (Рис.2.e), поэтому ядро неона обладает повышенной устойчивостью. У атома неона на внешней электронной валентной орбитали 2p нет свободных электронов, они все спаренные, поэтому атом неона химически инертен.

С выгоранием углеродно – кислородного ядра в центре звезды продолжается рост температуры и степени сжатия силовых нитей и при достижении ею величины 0,24 10—27м начинается горение ядер неона. Оно сопровождается отрывом от ядер неона α -частиц (ядер гелия) и последующим присоединением их к другим ядрам неона. В результате присоединения одной α -частицы образуется ядро магния, двух ядро кремния. Присоединение происходит также, как и в предыдущих синтезах новых элементов, направлено с образованием определенной конфигурацией ядра. Изотоп ядра кремния 28Si имеет три энергетические оболочки (Рис.2.k) В третьей (y) оболочке находятся 4протона и 4 нейтрона. Протоны взаимодействуют с двумя электронами внешней валентной орбитали 3p, а также у него два спаренных электрона на орбитали3s промотируют на вакантную орбиталь 3d, потому кремний четырехвалентен. Это дает возможность атому кремния проявлять себя как химически активный элемент. Кремний является одним из широко распространен ным элементом в природе.

Кремний является последним элементом способным к термоядерным экзотермическим реакциям. Термосинтез с его участием начинается при температуре 109 K и степени сжатия силовых нитей 0,21 10—27 м. Из за высокой температуры часть ядер кремния подвергается фотодиссоциации с выделением α -частиц. Затем свободные α -частицы последовательно присоединяются к оставшимся ядрам кремния. Присоединение α -частиц к ядру кремния происходит направлено с образованием определенной конфигурацией ядер промежуточных элементов и так вплоть до ядер железа. Изотоп ядра железа 56Fe имеет 4 ядерные оболочки (Рис.2.u). В четвертой (j) оболочке находятся 8 протонов и 8 нейтронов. Протоны взаимодействуют с электронами внешней валентной орбитали 4s2,, на которой находятся 3 валентных электрона, поэтому железо трехвалентное, но за счет промотирования количество валентных электронов может увеличится до 8.Железо средней активности металл. На кривой распространенности химических элементов оно входит в пятерку лидеров: водород, гелий, кислород, неон, железо, Но, первые четыре элемента газы, а железо металл, следовательно оно является самым распространенным металлом в Солнечной системе.


Рис. 2. Схема образования ядер неона, кремния и железа.

e – неон, k – кремний, u – железо


Ядра гелия и свободные нейтроны в больших количествах всегда присутствуют в ядерных топках звезд. Эти частицы являются основными компонентами образования новых химических элементов в недрах звезд. Если из α -частиц (ядер гелия) образуются четные элементы периодической системы, то для формирования новых нечетных элементов необходимо участие дейтронов. Так, образование ядра стабильного нечетного атома лития 7

Происхождение стабильных элементов

Подняться наверх