Читать книгу Аномальное расположение планет солнечной системы - Анатолий Трутнев - Страница 6

Глава 1.
Образование Вселенной
1.3 Образование звезд

Оглавление

В начале ХХ столетия немецкий астроном Гартман предположил, а затем экспериментально подтвердил с помощью спектрального анализа, что пространство между звездами заполнено газом. И химический состав этого газа близок химическому составу всех звезд. Основную долю межзвездного газа составляют водород и гелий, а остальные химические элементы представлены в нем в виде примесей. Кроме того, в 1930 году были получены убедительные доказательства присутствие другой компоненты в межзвездной среде – межзвездной пыли. Размер частичек пыли очень маленький, менее одного микрона. Ученые предполагают, что именно межзвездная твердая пыль поглощает проходящий через неё свет и делает его частично поляризованным. Использование полученных результатов исследований дало право астрономам рассматривать газопылевые комплексы межзвездной среды, как источник рождения новых звезд. Механизм образования звезд астрофизики представляют следующим образом.

Под действием гравитационных сил облако межзвездной газопылевой среды начинает конденсироваться. В результате образуется плотный непрозрачный газовый шар, Он является протозвездой, которая затем превратится в звезду. Однако давление внутри протозвезды, пока ещё не может уравновесить силы притяжения составляющих её частей, и она будет продолжать сжиматься. При этом температура её будет непрерывно расти, а размеры уменьшаться. При достижении определенного показателя температуры, протозвезда выйдет на главную последовательность, а в её недрах начнутся термоядерные реакции синтеза. В результате этих реакций из протонов образуется ядра гелия, высвобождается тепловая энергия, которая в виде световых волн излучается в межзвездное пространство. Давление газа внутри протозвезды уравновесит силы сжатия. Она перестанет сжиматься и превратится в звезду. Время существования звезды на главной последовательности определяется её первоначальной массой. Чем меньше масса звезды, тем больший период времени она будет находиться на главной последовательности. И, наоборот, чем больше у неё будет масса, тем меньше она проживет на главной последовательности. Так, например, если масса звезды в разы превышает массу Солнца, время её нахождения на главной последовательности исчисляется миллионами лет. Звезды, с массами незначительно отличающихся от массы Солнца, «живут» на главной последовательности миллиарды лет, а мало массивные звезды карлики могут, находится на ней триллионы лет (Рис.2). Рисунок взят из Википедия.


Рис.2 Зависимость времени нахождения звезды на главной последовательности от её массы.


Это связано с зависимостью светимости звезды с её массой. Чем больше масса звезды, тем выше температура в её недрах, ярче её светимость и тем быстрее она сжигает свои запасы водорода, и наоборот. Находясь на главной последовательности звезды, перестают сжиматься и излучают энергию в космическое пространство. Излучение звезд, происходит за счет выделения энергии при термоядерных реакциях, которые идут в их центральных областях. Запасы горючего, а им является водород, в центральных областях звезд имеют определенные пределы. По, их окончании давление газа в этих областях уже не может больше сдерживать гравитационные силы и ядра звезд начинают вновь сжиматься. При этом температура в них стремительно растет. На окраинах ядер, где ещё сохранились запасы водорода, ядерные реакции все ещё продолжают течь. Это повышает светимость звезд, и они увеличиваются в размерах. В результате звезды переходят в стадию красных гигантов. На этом этапе эволюции звезды сбрасывают наружную оболочку. Оболочка расширяется, образуя планетарную туманность, состоящую из газопылевой субстанции, из которой через десятки миллионов лет будут образовываться молодые звезды. Что же касается плотных горячих ядер звезд, массы которых меньше 1.2 массы Солнца, то через несколько десятков тысяч лет, медленно остывая, они превратятся в так называемые белые карлики. Вот такой сценарий образования звезд доминирует у астрономов в настоящее время. С позиции смоделированной системы взаимодействия материи с пространством в этом плане просматривается несколько иная картина. Рассмотрим, это на примере возникновения нашей звезды Солнца.

Принято считать, что при гравитационном сжатии материальных тел (частиц) происходит выделение тепловой энергии, но сам механизм этого процесса не получил должного объяснения. Эту проблему может логично объяснить, если использовать механизмы образования звезд из газопылевых облаков. При поступательном движении частицы пыли и газов в силовых нитях пространства, составляющие их гравитоны, сжимают нити в направлении своего движения. При этом высвобождается энергия пространства, которая переходит в энергию материи. Энергия материи вновь поглощается частицами газа и пыли. Кинетическая энергия их молекул возрастает, одновременно растет и температура. Таким образом, энергия гравитационного сжатия преобразуется в тепловую энергию.

Предполагается, что формирование Солнца как звезды происходило в три этапа. На первом этапе, гравитоны, составляющие, хаотично движущиеся частицы пыли и газа, поступательно двигались в силовых нитях пространства, деформировали (сжимали) их в направлении своего движения, поэтому степень их сжатия вокруг частиц увеличивалась. В результате частицы начинали сближаться, а затем сливались воедино. При этом силовые нити пространства вокруг них накладывались друг на друга, а степень их сжатия значительно возрастала. А так как, гравитоны движутся в направлении повышенной степени сжатия силовых нитей, находящиеся рядом частицы присоединялись к ним, в результате чего образовывалось местное уплотнение газопылевой смеси, Таких уплотнений на ранней стадии развитии звезды возникало большое множество, которые затем объединялись в одно единое уплотнение. Степень сжатия силовых нитей пространства вокруг этого уплотнения и дальность его распространения многократно увеличивалось, При этом масса его многократно возрастала, а форма динамично изменялась. Динамическое изменение формы уплотнения влекло за собой изменение величин результирующих сил, приложенных к различным частям уплотнения. При достижении массы уплотнения критической величины, доминирующая сила совершила поворот всей массы уплотнения в направлении своего действия. В результате уплотнение начало вращаться против часовой стрелки (Рис.3).


Рис. 3. Схема начала вращения Солнца на ранней стадии развития

F– сила, действующая на солнечную ось из области с высокой степенью сжатия силовых нитей пространства, F– сила, действующая на солнечную ось из области с низкой степенью сжатия силовых нитей пространства, F3 – сила, определяющая направление вращения Солнца


На втором этапе развития молодого Солнца скорость его вращения значительно увеличилось и началось формирование сферической формы. Звезда быстро обрастала гравитационной массой за счет притяжения частиц из окружающего звезду газопылевой смеси. В результате Солнце приняло форму газового шара, Одновременно с этим возрастала степень сжатия силовых нитей внутри звезды и окружающего её пространства на все большее и большее от него расстояние. С ростом гравитационного сжатия в недрах звезд увеличивалась температура звездного вещества и степень деформации (сжатия) силовых нитей внутри звездного пространства. При повышении в центральной части звезды температуры до 107 K степень сжатия силовых нитей составит 0,3310—25 м (таблица 2). Это несколько превышает степени сжатия их во внутриатомном пространстве атома водорода. В результате электрон преодолевает притяжение ядра и вылетает из атома. Образуется « бульон « из протонов и электронов, обладающих высокой энергией и высокой скоростью.

На третьем этапе развития Солнце температура в её недрах достигла 107 K, а степень сжатия силовых нитей увеличилась до 0,22 10—25 м. Что привело к следующим процессам. Протоны стали поглощать электроны и превращаться в нейтроны. Встреча протона с электроном происходит в тех случаях, когда степень сжатия силовых нитей пространства вне атома водорода, превосходит степень сжатия внутри его. Такая встреча носит название β+-распад и заканчивается она образованием нейтрона


p + -e → n + Y


Затем протоны объединяются с нейтронами и образуют дейтроны. При увеличении степени сжатия силовых нитей пространства, равной двух кратной степени их сжатия в атоме водорода, протон и нейтрон объединяются в дейтрон. Предполагается, что происходит следующим образом. С ростом степени сжатия силовых нитей пространства, то есть гравитационного сжатия, увеличивается кинетическая энергия нуклонов и они начинают сближаться. При достижении критического расстояния между ними (Рис 4. a) они обмениваются квантами энергии материи, так называемыми глюонам. Глюоны образуются в результате движения простонов и гравитонов, составляющих нуклоны при их движении в силовых нитях пространства. Затем энергия материи переходит в энергию пространства (Рис.4.b).которая связывает нуклоны и образуется дейтрон (ядро дейтерия). Энергия связи дейтрона составляет 0,1% от его массы покоя. Но образование дейтрона происходит, если обе частицы, имеют одинаковый спин. При разных спинах протон с нейтроном не объединяются. Таким образом, в результате последовательно идущих термоядерных реакциях четыре протона превращаются в ядро гелия. При этом образуются два позитрона, два нейтрино и выделяется энергия (Q = 26,73), а энергия связи гелия возрастает до 0,74% от его массы покоя


4p → 4Не +2е+ +2νe + Q.


Рис. 4 Схема образования дейтрона

Em – энергия материи, E– энергия пространства, p – протон, n – нейтрон, r – критическое расстояние между нуклонами 10—15м


Ядро гелия представляет собой первую энергетическую оболочку (q), входящую в состав ядер всех химических элементов (Рис.5.a). Каждый нуклон в ядре находится в квантовом состоянии, обладает определённым количеством энергии и моментом вращения. В соответствии с принципом Паули, в одном состоянии могут находиться не более одного протона и одного нейтрона. Оболочка состоит из двух энергетических уровней: уровень протонов и уровень нейтронов. Она полностью заполнена нуклонами. Изотоп атома гелия с ядром 4He стабилен и имеет повышенную устойчивость. Вокруг ядра обращаются два электрона с антипаралельными спинами. Оба электрона находятся на самой низшей по энергии орбитали 1s2, граничная поверхность, которой является симметрично-сферической. Внутри этой поверхности силы сжатия уравновешиваются силами расширения. Здесь электронная плотность достигает своего максимального значения. Степень деформации (сжатие) силовых нитей пространства до граничной поверхности высока и однородна. За ней, то есть вокруг эффективного радиуса атома она незначительна. Это делает химическую связь гелия с другими элементами трудно доступной

Аномальное расположение планет солнечной системы

Подняться наверх