Читать книгу Физика пространства - Анатолий Трутнев - Страница 5
Часть I.
Физические свойства пространства и материи при их взаимодействии и взаимосвязи
Глава 1.
Система моделирования взаимодействия материи и пространства
1.3 Энергия пространства
ОглавлениеПонятие энергии одно из основных понятий в физике, а закон сохранения энергии – один из важнейших законов природы. Согласно этого закона энергия не возникает, не исчезает, а переходит из одного вида в другой.
Одним из важнейших принципов относительной теории Энштейна является вывод о связи энергии с массой.
Е = mc2
Коэффициентом связи здесь служит квадрат скорости света. Этим Энштейн подчеркнул, что энергия – это не что иное, а движущая масса.
В смоделированной системе в результате движения гравитонов в силовых линиях пространства они деформируются (сближаются), в результате чего выделяется энергия просранства (Ер), затраченное на их растяжение.
Следовательно, можно записать:
Еm = -Ep, где Еm – энергия материи;-Ep – энергия пространства.
Энергия покоя гравитона (Ео). она равна Ео = gc2
Энергия покоя простона (-Ео): -Ео = -px0, где x0 – коэффициент связи с пространством.
По условиям моделирования: g = -p,
следовательно gc2= -px0; c2=x0
Рассмотрим механизм перехода энергии из одного вида в другой с позиции взаимодействия материи и пространства на примере с маятником.
Маятник в среде с трением, качнувшись несколько раз, останавливается. Механическая энергия маятника переходит во внутреннюю энергию трущихся тел и их температура повышается. Затем в результате теплообмена внутренняя энергия нагретых тел переходит во внутреннюю энергию частиц, окружающего их пространства с более низкой температурой.
Считается, что этот процесс необратим и необходимость определяется не законом сохранения энергии, а другими неизвестными законами природы.
Использование смоделированной системы в этом случае, убеждает в том, что этот процесс определяется законом сохранения энергии.
Маятник представляет собой совокупность гравитонов, размещенных в определенной последовательности в силовых линиях пространства.
В результате приложенной к нему силы (F) он получает кинетическую энергию (Т) и совершает колебательные движения.
Кинетическая энергия расходуется на ускорение гравитонов маятника в силовых линиях окружающего пространства. В результате чего они деформируются (сближаются) с выделением энергии. Но кинетическая энергия – это энергия материи (движущаяся масса), а выделение энергии – это энергия пространства, что говорит о переходе одного вида энергии в другой.
С ростом энергии в силовых линиях пространства увеличивается частота и амплитуда их колебаний, а это ведет к уменьшению расстояния между ними.
Движущиеся в них гравитоны молекул маятника и воздушной среды, в которой происходит колебательное движение маятника, в результате сближения силовых линий пространства увеличивают скорость своего движения. Увеличение же скорости движения молекул газовой среды и скорости колебаний молекул в кристаллической решетке твердых тел приводит к повышению их температуры.
Следовательно, в данном случае имеет место обратный переход энергии пространства в энергию материи.
Увеличение частоты и амплитуды колебаний силовых линий пространства происходит локально – в межмолекулярное пространство маятника и воздушной среды. После окончания колебательных движений маятника приток дополнительной пространственной энергии в эту область заканчивается Избыток поступающей энергии из этой области переходит в окружающее ее межмолекулярное пространство воздушной среды. Частота и амплитуда колебаний силовых линий пространства выравнивается, а вместе с ней уравниваются скорости движения молекул воздуха и падает скорость колебания молекул в кристаллической решетке маятника. Происходит теплообмен, и температура маятника и воздушной среды выравниваются.