Читать книгу Random Motions in Markov and Semi-Markov Random Environments 1 - Anatoliy Swishchuk - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright

Preface

Acknowledgments

Introduction

PART 1: Basic Methods 1 Preliminary Concepts 1.1. Introduction to random evolutions 1.2. Abstract potential operators 1.3. Markov processes: operator semigroups 1.4. Semi-Markov processes 1.5. Lumped Markov chains 1.6. Switched processes in Markov and semi-Markov media 2 Homogeneous Random Evolutions (HRE) and their Applications 2.1. Homogeneous random evolutions (HRE) 2.2. Limit theorems for HRE

PART 2: Applications to Reliability, Random Motions, and Telegraph Processes 3 Asymptotic Analysis for Distributions of Markov, Semi-Markov and Random Evolutions 3.1. Asymptotic distribution of time to reach a level that is infinitely increasing by a family of semi-Markov processes on the set ℕ; 3.2. Asymptotic inequalities for the distribution of the occupation time of a semi-Markov process in an increasing set of states 3.3. Asymptotic analysis of the occupation time distribution of an embedded semi-Markov process (with increasing states) in a diffusion process 3.4. Asymptotic analysis of a semigroup of operators of the singularly perturbed random evolution in semi-Markov media 3.5. Asymptotic expansion for distribution of random motion in Markov media under the Kac condition 3.6. Asymptotic estimation for application of the telegraph process as an alternative to the diffusion process in the Black–Scholes formula 4 Random Switched Processes with Delay in Reflecting Boundaries 4.1. Stationary distribution of evolutionary switched processes in a Markov environment with delay in reflecting boundaries 4.2. Stationary distribution of switched process in semi-Markov media with delay in reflecting barriers 4.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer: the Markov case 4.4. Application of random evolutions with delaying barriers to modeling control of supply systems with feedback: the semi-Markov switching process 5 One-dimensional Random Motions in Markov and Semi-Markov Media 5.1. One-dimensional semi-Markov evolutions with general Erlang sojourn times 5.2. Distribution of limiting position of fading evolution 5.3. Differential and integral equations for jump random motions 5.4. Estimation of the number of level crossings by the telegraph process

References

10  Index

11  Summary of Volume 2

12  End User License Agreement

List of Illustrations

1 Chapter 4Figure 4.1. A system of two unreliable subsystems, say S1 and S2, connected in s...Figure 4.2. Efficiency parameter K as a function of reservoir size V for differe...Figure 4.3. Efficiency parameter K as a function of reservoir size V for differe...

List of Tables

1 Chapter 4Table 4.1. Maximum and minimum values of K for different λ/μ ratios. We have fix...Table 4.2. Maximum values of K at V = 5 for different λ/μ ratios and different v...

Guide

Cover

Table of Contents

Title page

Copyright

Preface

Acknowledgments

Introduction

Begin Reading

References

10  Index

11  Summary of Volume 2

12  End User License Agreement

Pages

v

iii

iv

ix

x

xi

xiii

xvv

xvi

10  xvii

11  xviii

12  xix

13  xx

14  xxi

15  xxii

16  1

17  3

18  4

19  5

20 6

21  7

22  8

23  9

24  10

25  11

26  12

27  13

28  14

29  15

30  16

31  17

32  18

33  19

34  20

35  21

36  22

37  23

38  24

39  25

40  26

41  27

42  28

43  29

44  30

45  31

46  32

47  33

48  34

49  35

50  36

51  37

52  38

53  39

54  40

55  41

56  42

57  43

58  44

59  45

60  46

61  47

62  48

63  49

64  50

65  51

66  52

67  53

68  54

69  55

70  56

71  57

72  59

73 60

74  61

75  62

76  63

77  64

78  65

79  66

80  67

81  68

82  69

83  70

84  71

85  72

86  73

87  74

88  75

89  76

90  77

91  78

92  79

93  80

94  81

95  82

96  83

97  84

98  85

99  86

100  87

101  88

102  89

103  90

104  91

105  92

106  93

107  94

108  95

109  96

110  97

111  98

112  99

113  100

114  101

115  103

116  104

117  105

118  106

119  107

120  108

121  109

122  110

123  111

124  112

125  113

126  114

127  115

128  116

129  117

130  118

131  119

132  120

133  121

134  122

135  123

136  124

137  125

138  126

139  127

140  128

141  129

142  130

143  131

144  132

145  133

146  134

147  135

148  136

149  137

150  138

151  139

152  140

153  141

154  142

155  143

156  144

157  145

158  146

159  147

160  148

161  149

162 150

163  151

164  152

165  153

166  154

167  155

168  156

169  157

170  159

171  160

172  161

173  162

174  163

175  164

176  165

177  166

178  167

179  168

180  169

181  170

182  171

183  172

184  173

185  174

186  175

187  176

188  177

189  178

190  179

191  180

192  181

193  182

194  183

195  184

196  185

197  186

198  187

199  188

200  189

201  190

202  191

203  192

204  193

205  194

206  195

207  196

208  197

209  198

210  199

211  200

212  201

213  202

214  203

215  205

216 206

217 207

218 208

219 209

220 210

221 211

222 212

223 213

224 214

225 215

226 216

227 217

228  219

229 220

230  221

231 222

232 223

233 224

234  225

235  226

236  227

237  228

238  229

239  230

240  231

Random Motions in Markov and Semi-Markov Random Environments 1

Подняться наверх