Читать книгу Random Motions in Markov and Semi-Markov Random Environments 1 - Anatoliy Swishchuk - Страница 2
ОглавлениеTable of Contents
1 Cover
4 Preface
7 PART 1: Basic Methods 1 Preliminary Concepts 1.1. Introduction to random evolutions 1.2. Abstract potential operators 1.3. Markov processes: operator semigroups 1.4. Semi-Markov processes 1.5. Lumped Markov chains 1.6. Switched processes in Markov and semi-Markov media 2 Homogeneous Random Evolutions (HRE) and their Applications 2.1. Homogeneous random evolutions (HRE) 2.2. Limit theorems for HRE
8 PART 2: Applications to Reliability, Random Motions, and Telegraph Processes 3 Asymptotic Analysis for Distributions of Markov, Semi-Markov and Random Evolutions 3.1. Asymptotic distribution of time to reach a level that is infinitely increasing by a family of semi-Markov processes on the set ℕ; 3.2. Asymptotic inequalities for the distribution of the occupation time of a semi-Markov process in an increasing set of states 3.3. Asymptotic analysis of the occupation time distribution of an embedded semi-Markov process (with increasing states) in a diffusion process 3.4. Asymptotic analysis of a semigroup of operators of the singularly perturbed random evolution in semi-Markov media 3.5. Asymptotic expansion for distribution of random motion in Markov media under the Kac condition 3.6. Asymptotic estimation for application of the telegraph process as an alternative to the diffusion process in the Black–Scholes formula 4 Random Switched Processes with Delay in Reflecting Boundaries 4.1. Stationary distribution of evolutionary switched processes in a Markov environment with delay in reflecting boundaries 4.2. Stationary distribution of switched process in semi-Markov media with delay in reflecting barriers 4.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer: the Markov case 4.4. Application of random evolutions with delaying barriers to modeling control of supply systems with feedback: the semi-Markov switching process 5 One-dimensional Random Motions in Markov and Semi-Markov Media 5.1. One-dimensional semi-Markov evolutions with general Erlang sojourn times 5.2. Distribution of limiting position of fading evolution 5.3. Differential and integral equations for jump random motions 5.4. Estimation of the number of level crossings by the telegraph process
10 Index
List of Illustrations
1 Chapter 4Figure 4.1. A system of two unreliable subsystems, say S1 and S2, connected in s...Figure 4.2. Efficiency parameter K as a function of reservoir size V for differe...Figure 4.3. Efficiency parameter K as a function of reservoir size V for differe...
List of Tables
1 Chapter 4Table 4.1. Maximum and minimum values of K for different λ/μ ratios. We have fix...Table 4.2. Maximum values of K at V = 5 for different λ/μ ratios and different v...
Pages
1 v
2 iii
3 iv
4 ix
5 x
6 xi
7 xiii
8 xvv
9 xvi
10 xvii
11 xviii
12 xix
13 xx
14 xxi
15 xxii
16 1
17 3
18 4
19 5
20 6
21 7
22 8
23 9
24 10
25 11
26 12
27 13
28 14
29 15
30 16
31 17
32 18
33 19
34 20
35 21
36 22
37 23
38 24
39 25
40 26
41 27
42 28
43 29
44 30
45 31
46 32
47 33
48 34
49 35
50 36
51 37
52 38
53 39
54 40
55 41
56 42
57 43
58 44
59 45
60 46
61 47
62 48
63 49
64 50
65 51
66 52
67 53
68 54
69 55
70 56
71 57
72 59
73 60
74 61
75 62
76 63
77 64
78 65
79 66
80 67
81 68
82 69
83 70
84 71
85 72
86 73
87 74
88 75
89 76
90 77
91 78
92 79
93 80
94 81
95 82
96 83
97 84
98 85
99 86
100 87
101 88
102 89
103 90
104 91
105 92
106 93
107 94
108 95
109 96
110 97
111 98
112 99
113 100
114 101
115 103
116 104
117 105
118 106
119 107
120 108
121 109
122 110
123 111
124 112
125 113
126 114
127 115
128 116
129 117
130 118
131 119
132 120
133 121
134 122
135 123
136 124
137 125
138 126
139 127
140 128
141 129
142 130
143 131
144 132
145 133
146 134
147 135
148 136
149 137
150 138
151 139
152 140
153 141
154 142
155 143
156 144
157 145
158 146
159 147
160 148
161 149
162 150
163 151
164 152
165 153
166 154
167 155
168 156
169 157
170 159
171 160
172 161
173 162
174 163
175 164
176 165
177 166
178 167
179 168
180 169
181 170
182 171
183 172
184 173
185 174
186 175
187 176
188 177
189 178
190 179
191 180
192 181
193 182
194 183
195 184
196 185
197 186
198 187
199 188
200 189
201 190
202 191
203 192
204 193
205 194
206 195
207 196
208 197
209 198
210 199
211 200
212 201
213 202
214 203
215 205
216 206
217 207
218 208
219 209
220 210
221 211
222 212
223 213
224 214
225 215
226 216
227 217
228 219
229 220
230 221
231 222
232 223
233 224
234 225
235 226
236 227
237 228
238 229
239 230
240 231