Читать книгу Random Motions in Markov and Semi-Markov Random Environments 2 - Anatoliy Swishchuk - Страница 2
ОглавлениеTable of Contents
1 Cover
4 Preface
6 Introduction I.1. Overview I.2. Description of the book
7 PART 1: Higher-dimensional Random Motions and Interactive Particles 1 Random Motions in Higher Dimensions 1.1. Random motion at finite speed with semi-Markov switching directions process 1.2. Random motion with uniformly distributed directions and random velocity 1.3. The distribution of random motion at non-constant velocity in semi-Markov media 1.4. Goldstein–Kac telegraph equations and random flights in higher dimensions 1.5. The jump telegraph process in Rn 2 System of Interactive Particles with Markov and Semi-Markov Switching 2.1. Description of the Markov model 2.2. Interaction of particles governed by generalized integrated telegraph processes: a semi-Markov case
8 PART 2: Financial Applications 3 Asymptotic Estimation for Application of the Telegraph Process as an Alternative to the Diffusion Process in the Black–Scholes Formula 3.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in the case of disbalance 3.2. Application: Black–Scholes formula 4 Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Markov-modulated Volatilities 4.1. Volatility derivatives 4.2. Martingale representation of a Markov process 4.3. Variance and volatility swaps for financial markets with Markov-modulated stochastic volatilities 4.4. Covariance and correlation swaps for two risky assets for financial markets with Markov-modulated stochastic volatilities 4.5. Example: variance, volatility, covariance and correlation swaps for stochastic volatility driven by two state continuous Markov chain 4.6. Numerical example 4.7. Appendix 1 5 Modeling and Pricing of Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Semi-Markov Volatilities 5.1. Introduction 5.2. Martingale representation of semi-Markov processes 5.3. Variance and volatility swaps for financial markets with semi-Markov stochastic volatilities 5.4. Covariance and correlation swaps for two risky assets in financial markets with semi-Markov stochastic volatilities 5.5. Numerical evaluation of covariance and correlation swaps with semi-Markov stochastic volatility 5.6. Appendices
10 Index
List of Tables
1 Chapter 4Table 4.1. One-step transition probability matrixTable 4.2. One-step transition probability matrix
List of Illustrations
1 Chapter 1Figure 1.1. Approximated probability density function f3(t, x) − r(t, x) for λ =...Figure 1.2. f(t, x) for λ = 2 and v = 3, according to Garra and Orsingher (2014)...Figure 1.3. Integration of f3(t, x) − r(t, x) and f(t, x) for λ = 2 and v = 2. T...Figure 1.4. Integration of f3(t, x) − r(t, x) and f(t, x) for λ = 0.2 and v = 2....Figure 1.5. Integration of f3(t, x) − r(t, x) and f(t, x) for λ = 2 and v = 0.2....Figure 1.6. Integration of f3(t, x) and f(t, x) for λ = 0.2 and v = 0.2. The sin...
2 Chapter 3Figure 3.1. Dependence of European call option price on v (left) and λ (right)Figure 3.2. Dependence of European call option price on v and λ. For a color ver...
3 Chapter 4Figure 4.1. Variance and volatility swap prices. For a color version of this fig...Figure 4.2. Variance and volatility swap prices. For a color version of this fig...
Pages
1 v
2 iii
3 iv
4 ix
5 x
6 xi
7 xiii
8 xv
9 xvi
10 xvii
11 xviii
12 xix
13 xx
14 xxi
15 xxii
16 1
17 3
18 4
19 5
20 6
21 7
22 8
23 9
24 10
25 11
26 12
27 13
28 14
29 15
30 16
31 17
32 18
33 19
34 20
35 21
36 22
37 23
38 24
39 25
40 26
41 27
42 28
43 29
44 30
45 31
46 32
47 33
48 34
49 35
50 36
51 37
52 38
53 39
54 40
55 41
56 42
57 43
58 44
59 45
60 46
61 47
62 48
63 49
64 50
65 51
66 52
67 53
68 54
69 55
70 56
71 57
72 58
73 59
74 60
75 61
76 62
77 63
78 64
79 65
80 67
81 68
82 69
83 70
84 71
85 72
86 73
87 74
88 75
89 76
90 77
91 78
92 79
93 80
94 81
95 82
96 83
97 84
98 85
99 86
100 87
101 88
102 89
103 90
104 91
105 92
106 93
107 94
108 95
109 96
110 97
111 99
112 101
113 102
114 103
115 104
116 105
117 106
118 107
119 108
120 109
121 111
122 112
123 113
124 114
125 115
126 116
127 117
128 118
129 119
130 120
131 121
132 122
133 123
134 124
135 125
136 126
137 127
138 128
139 129
140 130
141 131
142 132
143 133
144 134
145 135
146 136
147 137
148 138
149 139
150 140
151 141
152 143
153 144
154 145
155 146
156 147
157 148
158 149
159 150
160 151
161 152
162 153
163 154
164 155
165 156
166 157
167 158
168 159
169 160
170 161
171 162
172 163
173 164
174 165
175 166
176 167
177 168
178 169
179 170
180 171
181 172
182 173
183 174
184 175
185 177
186 178
187 179
188 180
189 181
190 182
191 183
192 184
193 185
194 186
195 187
196 188
197 189
198 191
199 193
200 194
201 195
202 196
203 197
204 198
205 199
206 200
207 201
208 202
209 203