Читать книгу Random Motions in Markov and Semi-Markov Random Environments 2 - Anatoliy Swishchuk - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright

Preface

Acknowledgments

Introduction I.1. Overview I.2. Description of the book

7  PART 1: Higher-dimensional Random Motions and Interactive Particles 1 Random Motions in Higher Dimensions 1.1. Random motion at finite speed with semi-Markov switching directions process 1.2. Random motion with uniformly distributed directions and random velocity 1.3. The distribution of random motion at non-constant velocity in semi-Markov media 1.4. Goldstein–Kac telegraph equations and random flights in higher dimensions 1.5. The jump telegraph process in Rn 2 System of Interactive Particles with Markov and Semi-Markov Switching 2.1. Description of the Markov model 2.2. Interaction of particles governed by generalized integrated telegraph processes: a semi-Markov case

8  PART 2: Financial Applications 3 Asymptotic Estimation for Application of the Telegraph Process as an Alternative to the Diffusion Process in the Black–Scholes Formula 3.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in the case of disbalance 3.2. Application: Black–Scholes formula 4 Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Markov-modulated Volatilities 4.1. Volatility derivatives 4.2. Martingale representation of a Markov process 4.3. Variance and volatility swaps for financial markets with Markov-modulated stochastic volatilities 4.4. Covariance and correlation swaps for two risky assets for financial markets with Markov-modulated stochastic volatilities 4.5. Example: variance, volatility, covariance and correlation swaps for stochastic volatility driven by two state continuous Markov chain 4.6. Numerical example 4.7. Appendix 1 5 Modeling and Pricing of Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Semi-Markov Volatilities 5.1. Introduction 5.2. Martingale representation of semi-Markov processes 5.3. Variance and volatility swaps for financial markets with semi-Markov stochastic volatilities 5.4. Covariance and correlation swaps for two risky assets in financial markets with semi-Markov stochastic volatilities 5.5. Numerical evaluation of covariance and correlation swaps with semi-Markov stochastic volatility 5.6. Appendices

References

10  Index

11  Summary of Volume 1

12  End User License Agreement

List of Tables

1 Chapter 4Table 4.1. One-step transition probability matrixTable 4.2. One-step transition probability matrix

List of Illustrations

1 Chapter 1Figure 1.1. Approximated probability density function f3(t, x) − r(t, x) for λ =...Figure 1.2. f(t, x) for λ = 2 and v = 3, according to Garra and Orsingher (2014)...Figure 1.3. Integration of f3(t, x) − r(t, x) and f(t, x) for λ = 2 and v = 2. T...Figure 1.4. Integration of f3(t, x) − r(t, x) and f(t, x) for λ = 0.2 and v = 2....Figure 1.5. Integration of f3(t, x) − r(t, x) and f(t, x) for λ = 2 and v = 0.2....Figure 1.6. Integration of f3(t, x) and f(t, x) for λ = 0.2 and v = 0.2. The sin...

2 Chapter 3Figure 3.1. Dependence of European call option price on v (left) and λ (right)Figure 3.2. Dependence of European call option price on v and λ. For a color ver...

3 Chapter 4Figure 4.1. Variance and volatility swap prices. For a color version of this fig...Figure 4.2. Variance and volatility swap prices. For a color version of this fig...

Guide

Cover

Table of Contents

Title page

Copyright

Preface

Acknowledgments

Introduction

Begin Reading

References

10  Index

11  Summary of Volume 1

12  End User License Agreement

Pages

v

iii

iv

ix

x

xi

xiii

xv

xvi

10  xvii

11  xviii

12  xix

13  xx

14  xxi

15  xxii

16  1

17  3

18  4

19  5

20  6

21  7

22  8

23  9

24  10

25  11

26  12

27  13

28  14

29  15

30  16

31  17

32  18

33  19

34  20

35  21

36  22

37  23

38  24

39  25

40  26

41  27

42  28

43  29

44  30

45  31

46  32

47  33

48  34

49  35

50  36

51  37

52  38

53  39

54  40

55  41

56  42

57  43

58  44

59  45

60  46

61  47

62  48

63  49

64  50

65  51

66  52

67  53

68  54

69  55

70  56

71  57

72  58

73  59

74  60

75  61

76  62

77  63

78  64

79  65

80  67

81  68

82  69

83  70

84  71

85  72

86  73

87  74

88  75

89  76

90  77

91  78

92  79

93  80

94  81

95  82

96  83

97  84

98  85

99  86

100  87

101  88

102  89

103  90

104  91

105  92

106  93

107  94

108  95

109  96

110  97

111  99

112  101

113  102

114  103

115  104

116  105

117  106

118  107

119  108

120  109

121  111

122  112

123  113

124  114

125  115

126  116

127  117

128  118

129  119

130  120

131  121

132  122

133  123

134  124

135  125

136  126

137  127

138  128

139  129

140  130

141  131

142  132

143  133

144  134

145  135

146  136

147  137

148  138

149  139

150  140

151  141

152  143

153  144

154  145

155  146

156  147

157  148

158  149

159  150

160  151

161  152

162  153

163  154

164  155

165  156

166  157

167  158

168  159

169  160

170  161

171  162

172  163

173  164

174  165

175  166

176  167

177  168

178  169

179  170

180  171

181  172

182  173

183  174

184  175

185  177

186 178

187 179

188 180

189 181

190 182

191 183

192 184

193 185

194 186

195 187

196 188

197 189

198  191

199  193

200 194

201 195

202 196

203  197

204  198

205  199

206  200

207  201

208  202

209  203

Random Motions in Markov and Semi-Markov Random Environments 2

Подняться наверх