Читать книгу Zytologie, Histologie, allgemeine Pathologie - André Lauber - Страница 9

Оглавление

 Der Grundbauplan der Zellen

Durchschnittlich hat eine Körperzelle einen Durchmesser von 20–30 μm. Die Spanne reicht allerdings von 7 μm (rote Blutkörperchen) bis zu 200 μm (Eizellen).

Exkurs von klein zu gross 1 Meter (m) entspricht 1’000’000’000 Nanometer (nm), 1’000’000 Mikrometer (μm), 1’000 Millimeter (mm) oder 100 Zentimeter (cm). (Entspräche die Distanz von der Erde zur Sonne 1 m, so wäre die Cheopspyramide in Ägypten in diesem Massstab 1 nm hoch.)


Abb. 1 Körperzelle mit ihren Organellen [Roland Sommer]

Trotz Unterschiede in Form und Grösse findet man in jeder Körperzelle dieselben Bestandteile (Abb. 1).

 Plasmalemm (Zellmembran)

 Zytoplasma (Zellflüssigkeit)

 Zellorganellen (Zellkörperchen)

 Nukleus (Zellkern) (ausser in den roten Blutkörperchen)

Das Plasmalemm ist eine Doppelhülle aus Phospholipiden, die den Zellinhalt umschliesst und die Zelle nach aussenabdichtet. Im gelartigen Zytoplasma schwimmen die Zellorganellen. Sie sind Spezialisten und sorgen für den reibungslosen Ablauf des Zellstoffwechsels (Energie- und Eiweissherstellung, Zellteilung etc.). Der Nukleus steuert den Stoffwechsel und fungiert als Hüter des Erbguts.

Das Plasmalemm – Schutz und Stoffaustausch

Jede Körperzelle ist von einer Membran umschlossen, die den Stoffaustausch zwischen innen und aussen reguliert (Abb. 2). Der grösste Teil des Plasmalemms setzt sich zusammen aus einer Kombination von Lipiden (Fett) und Phosphaten. Diese Phospholipide sind in einer Doppelschicht angeordnet und bilden das Plasmalemm. Dabei richten sich die Fettmoleküle nach innen und die Phosphatmoleküle nach aussen. Nebst den Phospholipiden findet man im Plasmalemm von menschlichen Zellen Cholesterin und Glykolipide (Zucker-Fett-Verbindungen).


Abb. 2 Plasmalemm mit Membranproteinen und Glykokalyx [M. Ruiz Villarreal; bearbeitet von Dr. med. André Lauber]

Da Fett hydrophob (wasserabweisend) ist, bleibt der Innenteil der Doppelschicht wasserdicht. Der Phosphatteil ist hingegen hydrophil (wasserliebend). Diese beiden Eigenschaften garantieren ein gleichbleibendes Milieu in der Zelle.

Phospholipide besitzen bei Körpertemperatur (37° C) eine flüssige Konsistenz. Deshalb sind Zellen enorm flexibel. Dass das Plasmalemm nicht «wegschwimmt», dafür sorgen die hydrophoben Fettanteile.

MEMO Plasmalemm Das Plasmalemm besteht aus einer Phospholipid-Doppelschicht, die aussen hydrophile und innen hydrophobe Eigenschaften besitzt.

Das Plasmalemm stellt keine undurchdringbare Wand dar: Fettlösliche Substanzen sowie gasförmige Moleküle (Sauerstoff (O2), Kohlendioxid (CO2)) gehen problemlos durch. Für wasserlösliche Substanzen bildet das Plasmalemm allerdings eine Barriere. Um solche Stoffe in die Zelle oder aus der Zelle zu schleusen, sind im Plasmalemm «Türen» eingebaut – die Membranproteine (Membraneiweisse). Sie fungieren als Pumpen und Poren für den Austausch wasserlöslicher Stoffe. (Siehe Kapitel «Stoffaustausch – ein stetiges hin und her»)

Auf der Aussenseite des Plasmalemm sitzt die Glykokalyx («Zuckerschale»). Sie besteht aus bäumchenartigen Zuckermolekülen, die in Membranproteinen (Glykoproteine) oder Lipidmolekülen (Glykolipide) stecken. Die Glykokalyx dient der Zelle als «Identitätskarte» und erlaubt dem Immunsystem die Unterscheidung zwischen körpereigen und körperfremd. Die Glykokalyx definiert zum Beispiel die Blutgruppeneigenschaften A, B, AB, 0 sowie den Rhesusfaktor. Auch für die Zell-Kommunikation ist die Glykokalyx nützlich. Zum Beispiel docken Hormone aus weit entfernten Zellen an die Glykokalyx und «sagen» der Zielzelle, was sie zu tun hat.

Das Zytoplasma – Organellen in wässrigem Milieu

Wie das Äussere der Zelle ist auch das Innere mit Wasser gefüllt. Im Wasser treiben Zellorganellen, Proteine und gelöste Stoffe, die zahlreiche Funktionen im Stoffwechsel übernehmen. Da gibt es Salze (Natrium, Kalium, Kalzium), Zuckermoleküle, Phosphate, Spurenelemente (Eisen, Zink, Chrom) und vieles mehr. Proteine machen etwa 20 % des Zytoplasmas aus. Deshalb besitzt es eine gelartige Konsistenz.

Das Zytoskelett – stabilisiert und formt die Zelle

Das Zytoskelett stabilisiert die Zelle und verleiht ihr die typische Form. Es besteht aus fädigen Eiweissen, die verschiedene Aufgaben innerhalb der Zelle übernehmen. Die beiden wichtigsten Vertreter sind die Aktinfilamente und die Mikrotubuli.

Sehr viele Aktinfilamente findet man in der Muskulatur. Dort sorgen sie zusammen mit Myosin für die Kontraktion eines Muskels. (Siehe Kapitel «Muskelgewebe – bringt Bewegung in den Körper»). Aktinfilamente findet man jedoch in allen Körperzellen. In den mobilen Zellen des Immunsystems zum Beispiel ermöglichen sie die amöboide Bewegung.

Mikrotubuli sehen aus wie winzige Röhrchen. In den Körperzellen entstehen sie schnell und zerfallen nach Gebrauch sofort, um an einer anderen Stelle erneut zu erscheinen. Mikrotubuli positionieren die Zellorganellen, helfen bei der Zellteilung und bilden Zilien im Atemtrakt sowie die Geisseln der Spermien.

Die Zellorganellen

Zellorganellen schwimmen als komplexe Strukturen im Zytoplasma. Sie erfüllen verschiedene Aufgaben im Zellstoffwechsel.

Zu den Zellorganellen gehören (Abb. 1):

 Mitochondrien (Energieproduktion)

 Ribosomen (Eiweissherstellung)

 Endoplasmatisches Retikulum (Speicherung und Bearbeitung der Eiweisse)

 Golgi-Apparat (Verpackung und Versand von Eiweissen)

 Lysosomen (intrazelluläre Verdauung)

 Nukleus (Hüter des Erbguts)

Die Mitochondrien – Kraftwerke der Zellen

Als Energiezentrale dient das Mitochondrium der Energiegewinnung durch Oxidation (Abb. 3). In den Mitochondrien oxidieren («verbrennen») Glukose (Traubenzucker) oder Fettsäuren mit Hilfe von O2 (Sauerstoff) zu CO2 (Kohlendioxid) und H2O (Wasser).


Abb. 3 Aufbau eines Mitochondriums [Mariana Ruiz Villarreal]

Als Gewinn entsteht der Energieträger Adenosintriphosphat (ATP). Sämtliche energieverbrauchenden Vorgänge im Körper benötigen ATP: Die Mitochondrien liefern den Nachschub. Daraus geht hervor, dass es reichlich Mitochondrien in Zellen gibt, die viel Energie verbrauchen (Herzmuskelzellen, Nervenzellen). Denkt man das weiter, wird klar, dass solche Zellen auf eine optimale Sauerstoffversorgung angewiesen sind.

Die Mitochondrien dienen auch als Kalziumspeicher und leiten die Apoptose (programmierter Zelltod) von Zellen ein. (Siehe Kapitel «Apoptose – programmierter Zelltod»)

Exkurs Oxidation Ursprüngliche Definition der Oxidation: die Verbindung eines Elements mit Sauerstoff. Modernere Definition der Oxidation: Prozess, bei dem einem Atom Elektronen entzogen werden. Der gegenteilige Prozess heisst Reduktion.

Wie bei den Körperzellen umschliesst eine Doppelmembran aus Phospholipiden die Mitochondrien. Die innere Schicht ist, anders als bei Körperzellen, gefaltet (Cristae). Hier finden komplexe chemische Reaktionen statt, die am Ende den Energieträger ATP liefern.

Eine weitere Ähnlichkeit zu Körperzellen ist das Erbgut: Jedes Mitochondrium besitzt eine eigene zirkuläre (ringförmige) DNA (Desoxyribonukleinsäure). Diese DNA wird allein von der Mutter auf die Kinder vererbt.

Forscher vermuten, dass in Urzeiten die heutigen Mitochondrien als Bakterien andere Lebewesen infizierten und daraus eine Symbiose entstand.

Die Ribosomen – Eiweissfabrik der Zelle

Ribosomen sind die Zellorganellen der Proteinsynthese (Eiweissherstellung). Die Ribosomen setzen sich aus zwei Teilen zusammen: einer kleinen und einer grossen Untereinheit. Jede Untereinheit ist aus rRNA (ribosomale Ribonukleinsäure) und zahlreichen Proteinen aufgebaut. Braucht der Körper ein Protein, wird im Zellkern zuerst eine Kopie der DNA angefertigt – die mRNA (messenger-RNA = Boten-RNA). Sie wird aus dem Zellkern geschleust und im Zytoplasma durch das Ribosom «gezogen». Es liest die Informationen der mRNA ab und «übersetzt» sie in Aminosäuren – die Bausteine der Proteine. (Siehe Kapitel «Die Proteinsynthese – Aminosäurebaukasten»)

Nach Anweisung der mRNA entsteht so eine Kette aus Aminosäuren und schliesslich das Protein (Abb. 4).

MEMO Ribosom Ribosomen kommen freischwimmend im Zytoplasma vor, aber auch angeheftet an der Wand des rER (raues endoplasmatisches Retikulum).


Abb. 4 Freies Ribosom (von zwei Seiten gesehen) mit einer grossen (1) und einer kleinen Untereinheit (2) [Dominus]

Die an den freien Ribosomen hergestellten Proteine sind für den Eigenbedarf der Zelle gedacht; die Proteine des rER sind für den Export aus der Zelle bestimmt.

Das endoplasmatische Retikulum (ER) – Lagern und Bearbeiten von Proteinen

Das ER (endoplasmatisches Retikulum) durchzieht als Hohlraumsystem netzartig (Retikulum = Netz) die Zellen (Abb. 5). Das ER kommt in fast allen Körperzellen vor, mit Ausnahme der roten Blutkörperchen (Erythrozyten).


Abb. 5 sER und gER [Magnus Manske; bearbeitet von Dr. med. André Lauber]

Es gibt ein rER (raues endoplasmatisches Retikulum) sowie ein gER (glattes endoplasmatisches Retikulum). Da die beiden Arten von ER ineinander übergehen können, handelt es sich um ein einziges System.

Exkurs s oder g?Im englischen Sprachraum spricht man nicht von gER, sondern von sER. Das «s» steht dabei für «smooth».

Das rER ist mit Ribosomen besetzt und hat daher eine raue Oberfläche. Die von den Ribosomen für den Export gebauten Proteine werden im rER gelagert und entweder direkt oder über den Golgi-Apparat aus der Zelle geschleust. Das gER ist frei von Ribosomen. Es kommt in den meisten Zellen nur in kleiner Zahl vor. Das gER produziert und modifiziert fettlösliche Substanzen wie Steroidhormone (Testosteron, Östradiol etc.) oder Phospholipide. In den Muskelzellen übernimmt das gER zusätzlich die Funktion des Kalziumspeichers. In der Leber dient das gER auch der «Entgiftung» (Detoxifikation) von körperfremden Substanzen.

MEMO rER und Zellkern Das rER ist direkt mit dem Zellkern verbunden, damit die mRNA ohne Umwege zu den Ribosomen gelangt.

Der Golgi-Apparat – Postversand der Zelle

Der Golgi-Apparat (sprich «Golschi») sieht aus wie ein Stapel flacher Schläuche (Abb. 6). Dabei ist die konvexe Cis-Seite dem endoplasmatischen Retikulum zugewandt und die konkave Trans-Seite der Zellhülle. Auf der Trans-Seite schnüren sich laufend Bläschen ab: die Golgi-Vesikel. Der Golgi-Apparat hat die Aufgabe, die im rER gebildeten Proteine zu lagern, zu modifizieren, zu verpacken und auszuliefern.


Abb. 6 Golgi-Apparat [Magnus Manske; bearbeitet von Dr. med. André Lauber]

In Drüsenzellen nimmt der Golgi-Apparat viel Raum ein. Bei Bedarf leiten Golgi-Vesikel die gespeicherten Sekrete an die Zellmembran, wo sie aus der Zelle ausgeschleust werden.

Die Lysosomen – Müllabfuhr der Zelle

Lysosomen sind vom Golgi-Apparat abgeschnürte Vesikel, die jede Menge Enzyme enthalten. Sie «fressen» zellfremdes Material (Viren, Bakterien), kaputte Zellteile sowie Abfall des Zellstoffwechsels und bauen alles enzymatisch ab. Diesen Vorgang nennt man intrazelluläre Verdauung. Das funktioniert in einem sauren Milieu am besten, weshalb im Inneren der Lysosomen ein pH-Wert von etwa 5.0 herrscht. Lysosomen in grosser Zahl findet man in den «Fresszellen» des Immunsystems (Makrophagen, Granulozyten).

Exkurs pH Der pH-Wert einer Flüssigkeit ist das Mass ihres sauren oder basischen Charakters. Ein pH-Wert von 7.0 bedeutet, dass die Flüssigkeit neutral ist (weder sauer noch basisch). Ein pH-Wert unter 7.0 ist sauer, ein pH-Wert über 7.0 basisch.

Der Nukleus – Hüter des Erbguts

Mit Ausnahme der Erythrozyten (rote Blutkörperchen) besitzen alle Zellen einen Nukleus (Zellkern). Manche Zellen besitzen zwei oder mehr Kerne (zum Beispiel Leberzellen und Skelettmuskelzellen).

Der Zellkern als «Zentrale der Zelle» ist Hüter der Erbinformation (DNA) und steuert den Zellstoffwechsel.

Der Nukleus ist dreiteilig aufgebaut (Abb. 7).

1. Die Kernhülle ist eine Doppelmembran, ähnlich der Zellhülle. Sie grenzt den Kern vom Zytoplasma ab und regelt den Austausch von Substanzen. Dieser Austausch findet durch die Kernporen statt, die gleichmässig über die Kernhülle verteilt sind. Es handelt sich dabei nicht einfach um Löcher in der Kernhülle, sondern um aufwändig gebaute Proteinkomplexe.

2. Im Kernplasma schwimmt die DNA.

3. Im Nukleolus (Kernkörperchen) entsteht die rRNA. Sie kodiert die Proteine aus denen die Ribosomen bestehen. Die einzelnen Proteine der Ribosomen werden gleich vor Ort im Nukleolus zusammengebaut. Der Nukleolus ist so etwas wie der Kopierapparat für die DNA.


Abb. 7 Zellkern mit Nukleolus [Bruce Blaus; bearbeitet von Dr. med. André Lauber]

Die Strukturen des Zellkerns sind unter dem Mikroskop nur in der Ruhephase der Zelle (Interphase) zu beobachten. Sobald die Zelle in die Teilungsphase übergeht, löst sich der Nukleus auf. Aus dem Chromatin (DNA-Stränge) bilden sich die Chromosomen. Jetzt kann sich die Zelle teilen. Nach der Zellteilung organisieren sich die Zellkerne in den Tochterzellen neu. (Siehe Kapitel «Zellteilung – Mitose oder Meiose»)

Zytologie, Histologie, allgemeine Pathologie

Подняться наверх