Читать книгу Vibrations of Linear Piezostructures - Andrew J. Kurdila - Страница 2

Table of Contents

Оглавление

Cover

Title Page

Copyright

Foreword

Preface

Acknowledgments

List of Symbols

1 Introduction 1.1 The Piezoelectric Effect 1.2 Applications 1.3 Outline of the Book

2 Mathematical Background 2.1 Vectors, Bases, and Frames 2.2 Tensors 2.3 Symmetry, Crystals, and Tensor Invariance 2.4 Problems

10  3 Review of Continuum Mechanics 3.1 Stress 3.2 Displacement and Strain 3.3 Strain Energy 3.4 Constitutive Laws for Linear Elastic Materials 3.5 The Initial‐Boundary Value Problem of Linear Elasticity 3.6 Problems

11  4 Review of Continuum Electrodynamics 4.1 Charge and Current 4.2 The Electric and Magnetic Fields 4.3 Maxwell's Equations 4.4 Problems

12  5 Linear Piezoelectricity 5.1 Constitutive Laws of Linear Piezoelectricity 5.2 The Initial‐Value Boundary Problem of Linear Piezoelectricity 5.3 Thermodynamics of Constitutive Laws 5.4 Symmetry of Constitutive Laws for Linear Piezoelectricity 5.5 Problems

13  6 Newton's Method for Piezoelectric Systems 6.1 An Axial Actuator Model 6.2 An Axial, Linear Potential, Actuator Model 6.3 A Linear Potential, Beam Actuator 6.4 Composite Plate Bending 6.5 Problems

14  7 Variational Methods 7.1 A Review of Variational Calculus 7.2 Hamilton's Principle 7.3 Hamilton's Principle for Piezoelectricity 7.4 Bernoulli–Euler Beam with a Shunt Circuit 7.5 Relationship to other Variational Principles 7.6 Lagrangian Densities 7.7 Problems

15  8 Approximations 8.1 Classical, Strong, and Weak Formulations 8.2 Modeling Damping and Dissipation 8.3 Galerkin Approximations 8.4 Problems

16  Supplementary Material S.1 A Review of Vibrations S.2 Tensor Analysis S.3 Distributional and Weak Derivatives

17  Bibliography

18  Index

19  End User License Agreement

Vibrations of Linear Piezostructures

Подняться наверх