Читать книгу Гитара без мифологии - Андрей Бронников - Страница 3

Часть 1. Ликбез
1.2. Резонансы и обертоны

Оглавление

Со школьных лет, а кто и раньше, мы помним притчу про солдат, что по мосту шли строем в ногу, и рухнул мост… Ну как же так!

В дискуссиях по музыкальным инструментам в интернете мне не единожды советовали учить физику, высказывая уверенность, что в школе я её не учил. На таких «советчиков» быстро нашёлся приём: определение резонанса помните? Хорошо, а почему такое происходит? Что с неким физическим телом на некоторой частоте не так, как на любой другой? Почему при воздействии сравнительно небольших усилий с некой частотой рухнул мост, способный выдерживать в разы большие статичные нагрузки?

Ни один из самонадеянных оппонентов ответить не смог. Да, друзья, пятёрка по физике в школьном аттестате не делает вас экспертами в технических областях знаний, в том числе в музыкальной акустике. Резонанс в школе не изучают, а именно проходят.

Чтобы найти ответ на этот каверзный вопрос, снова вспомним про колебательный контур, который в школе так же проходили. КК имеет собственную частоту, и может использоваться в электронном генераторе колебаний в качестве частотозадающего узла. А ещё, если через него пропустить несколько сигналов различных частот, мы можем обнаружить, что лучше всего, с наименьшими потерями по амплитуде, будет проходить сигнал с той самой частотой, которую КК задаёт в генераторе.

И что это значит? А это значит, что на резонансной частоте КК имеет минимальное электрическое сопротивление. И если правильно сформулировать причинно-следственную связь, получим определение: резонансная частота колебательного конура это такая частота, на которой его электрическое сопротивление минимально.

От электроники перейдём к механике. Многие физические тела имеют заметный резонанс на определённых частотах. И теперь нам несложно догадаться, откуда он берётся. Да, механическое (упругое) сопротивление физического тела неодинаково на разных частотах, и его резонансная частота – это частота, на которой упругое сопротивление минимально.

Вспомним школьную шутку про электрический ток: он похож на лентяя, поскольку стремится идти по пути наименьшего сопротивления. Вот и свободное колебание тоже норовит сформироваться на частоте, встречающей наименьшее сопротивление, хоть электрическое, хоть механическое.

Сопротивление на резонансной частоте обязательно ниже, чем при статичной нагрузке, в некоторых случаях во много раз. А упругое сопротивление чётко связано с пределом прочности. Разумеется, музыкальные инструменты делаются с достаточным запасом прочности, чтобы не рассыпались от собственного звучания, это для лучшего понимания явления. Например, почему же развалился мост из легенды.

***

Если руководствоваться параллелью с колебательным контуром, резонанс у физического тела может быть только один. Выходит, у струны может быть только один тон, у несущей только один резонанс.

К счастью, это не так. У колебательного контура электронный резонанс действительно один, а вот у физических тел график частота-упругое сопротивление зачастую имеет весьма замысловатую форму, в которой помимо глобального минимума присутствуют ещё и локальные. Такие точки на этом графике, из которых что вверх по частоте, что вниз, сопротивление увеличивается, и соответствуют частотам резонансов. При этом, чем выше абсолютное значение сопротивления в точке некоторого локального минимума, тем слабее резонанс на данной частоте.

Здесь снова уместна параллель из электротехники: так же распределяется мощность между несколькими параллельными резисторами с разным сопротивлением.

Вот так в струнах возникают линейки обертонов, а несущая часть обычно имеет несколько резонансов. Взаимодействие гармоник струн и резонансов несущей части почти всецело определяет звучание инструмента.

Гитара без мифологии

Подняться наверх