Читать книгу Инвестирование в Уран - Андрей Черкасенко - Страница 7

Глава 1. О природном уране
История урана

Оглавление

Уран – радиоактивный химический элемент с атомной массой 238,02. В периодической системе Д. И. Менделеева ему присвоен 92-й атомный номер. Этот серебристо-белый металл относится к семейству актиноидов и является самым тяжелым металлом, встречающимся в природе. Уран отличается мягкостью (в чистом виде он несколько мягче стали), ковкостью и гибкостью, обладает небольшими парамагнитными свойствами. Следует отметить химическую активность этого элемента: на воздухе он быстро окисляется, покрываясь радужной пленкой. В порошкообразном виде уран легко воспламеняется при температуре 150–170 °C, в результате чего образуется оксид U3O8.

Широкое распространение урана в земной коре – один из основополагающих факторов, играющих значительную роль в геофизических процессах. Тепло, выделяющееся при изотопном распаде этого элемента, занимает важное место в энергетическом балансе планеты.

Несмотря на то что уран встречается в природе чаще, чем многие другие металлы, такие как ртуть, серебро или кадмий (38-е место по распространенности), сложность его добычи заключается в том, что в недрах земли он находится в основном в рассеянном состоянии.

Отличительными признаками пород, характерных для урановых руд, являются кислая среда и высокое содержание кремния. Богаты ураном гранитные и осадочные породы, породы, содержащие органические отложения.

Уран составляет 0,0003 % поверхностного слоя земли и встречается в природе в огромном (более 100) количестве минеральных руд. Однако для отработки используются только около 12 видов отложений, содержащих этот элемент.

Самым богатым по содержанию урана минералом являются жилы настурана (уранинита, урановой смолки). Он носит также название диоксида урана, однако с химической точки зрения содержание кислорода в этих рудах варьируется от UO2 до U3O8 из-за процессов окисления и радиоактивного распада. Данный минерал является самым обогащенным по содержанию урана, но встречается крайне редко. Основное месторождение уранинита находится в Канаде в районе Большого Медвежьего озера. Богатые залежи настурана также выявлены в Заире, Чехии и Франции.

На втором месте по содержанию урана стоят конгломераты ториевой и урановой руд, смешанные с рудами других минералов. Чаще всего встречаются руды драгоценных металлов (серебро, золото), содержащие их в количествах, достаточных для разработки месторождений. Уран и торий становятся в таком случае продуктами – спутниками добычи драгоценных металлов. Такие разработки ведутся в Австралии, Канаде, России и ЮАР.

Уран выделяют также из карнотита (уранил-ванадат калия). Этот минерал, содержащий кроме урана также ванадий и другие элементы, чаще всего находят в осадочных породах и песчаниках. Разработка руд карнотита ведется на плато Колорадо, в США, а также в штатах Вайоминг, Аризона, Юта.

Еще одним источником урана являются железоурановые сланцы и фосфатные руды. Такие виды месторождений есть в Швеции, Марокко, США, Анголе и Центрально-Африканской Республике.

Небольшое количество урана содержится в лигнитах и некоторых углях. Так, отложения лигнитов с высоким содержанием урана разрабатываются в Северной и Южной Дакоте, в США; в Испании и Чехии обнаружены битумные угли, также богатые этим элементом.

Использование урана началось в глубокой древности. На раскопках в Помпее и Геркулануме археологами были найдены осколки керамики, покрытой желтой глазурью. Предметы датированы I в. до н. э. Для изготовления желтой глазури использовалась природная окись урана, в которой содержание минерала превышало 1 %.

В современном понимании уран был открыт в 1789 г. Именно тогда немецкий химик и натурфилософ Мартин-Генрих Клапрот занялся изучением тяжелого минерала черного цвета, который горняки часто называли «смоляной обманкой». До этого момента считалось, что в его состав входят цинк и железо, но Клапрот опроверг это предположение. Незадолго до начала исследования химик разработал способ превращения силикатов и других нерастворимых веществ в растворы.

Для этого он сплавлял минералы с гидроксидом калия в серебряном тигле. Этому способу он подверг и «смоляную обманку». К удивлению ученого, полного растворения не произошло. В связи с этим Клапрот сделал вывод о присутствии в минерале неизвестного металла. Следующим шагом химика было растворение минерала в азотной кислоте и «царской водке», что привело к выпадению в осадок светлых зеленовато-желтых кристаллов, по форме напоминавших шестигранные пластинки.

После долгих химических изысканий Клапрот смог получить массу с вкраплениями крошечных зерен металла. Этот новый элемент был назван ученым ураном (uranium) в честь планеты, открытой незадолго до этого события английским астрономом Гершелем. Сам Клапрот так объяснил название элемента: «Ранее признавалось существование лишь семи планет, соответствовавших семи металлам, которые и обозначались знаками планет. В связи с этим целесообразно, следуя традиции, назвать новый металл именем вновь открытой планеты. Слово уран происходит от греч. “ουρανóς” (небо) и, таким образом, может означать “небесный металл”».

Название «урановая смолка» тоже было введено в обиход с легкой руки немецкого химика, который стал так называть «смоляную обманку».

Хотя Клапрот внес огромный вклад в процесс изучения свойств и характеристик урана, некоторые из его выводов были впоследствии опровергнуты.

Так, в 1840 г., спустя 50 лет после открытия урана, французский химик Эжен-Мельхиор Пелиго сумел доказать, что полученное Клапротом вещество является не чистым ураном, а лишь его окислом UO2. Именно Пелиго сумел первым получить уран в качестве самостоятельного металла.

Из-за весьма небольших объемов добычи урана ученые того времени не могли проводить более обстоятельные исследования. В связи с этим на протяжении почти 100 лет после открытия этого элемента никакой новой информации о нем не появлялось. В небольших количествах уран использовался для создания красок и при фотосъемке, другого практического применения он не находил.

Следующей вехой в истории изучения урана стали исследования русского ученого Дмитрия Ивановича Менделеева, который в 1874 г. поместил уран на 92-ю клетку своей периодической системы и предположил, что атомный вес данного элемента не 120, как считалось ранее, а в два раза больше, т. е. 240. В 1896 г. немецкий химик Иоганн Циммерман опытным путем подтвердил гипотезу русского ученого.

Менделеев позже признавался: «Для меня лично уран весьма знаменателен уже потому, что играл выдающуюся роль в утверждении периодического закона, так как перемена его атомного веса вызвана была признанием закона и оправдана действительностью, а для меня (вместе с атомными весами Ce и Be) служила пробным камнем общности периодического закона».

Дальнейшая история исследования урана тесно переплетается с открытием радиоактивности. В 1885 г. немецкий физик Вильгельм Рентген обнародовал свои исследования проникающего излучения, Х-лучей. Долгие научные диспуты привели научное сообщество к вопросу опытного изучения процесса возникновения «рентгеновских» лучей в процессе фосфоресценции вообще. В 1896 г. этой темой занялся французский физик Антуан-Анри Беккерель, в семье которого изучение фосфоресценции уже стало традицией.

Свои эксперименты Беккерель начал с кристаллов уранилсульфата калия. Ученый обернул фотопластину черной бумагой и положил сверху тонкие кристаллы минерала. Предположив, что Х-лучи могут быть задержаны металлом, физик поместил между кристаллами и бумагой металлическое кольцо, очертания которого действительно четко проявились на фотопластине по окончании опыта.



После долгих исследований Беккерель сделал вывод о том, что между фосфоресценцией и проникающим излучением не существует никакой связи, а Х-лучи являются следствием наличия в минерале урана. Так была открыта радиоактивность. Вскоре Беккерель сделал еще одно открытие, касавшееся интенсивности излучения: оно тем выше, чем больше атомов урана в веществе. Но из этого правила возникло одно исключение – урановая смоляная руда, излучение от которой превышало излучение от чистого урана (его удалось получить французскому химику Анри Муассану в это же время). На основе этого исключения Пьером и Марией Кюри были открыты продукты распада урана – полоний и радий.

Дальнейшее изучение урана шло все более быстрыми темпами. В 1899 г. английский физик Эрнест Резерфорд делает вывод о неоднородности излучения урановых фракций. Им были открыты альфа- и бета-лучи. А в мае 1900 г. французский физик Поль Вийар говорит об еще одном излучении – гамма-лучах.

В том же году английский ученый Уильям Крукс обнаруживает, что существуют разновидности урана, и получает первый изотоп – «уран-Х», а затем и другие – «уран-I» и «уран-II».

В начале XX в. ученые ищут практическое применение накопленным знаниям об уране. В 1907 г. Резерфорд исследует возможность определения возраста геологических пород, базируясь на теории радиоактивности урана и тория. В 1913 г. Фредерик Содди, английский радиохимик, обобщил данные об открытых ранее разновидностях урана и ввел понятие «изотоп».

В 1932 г. англичанин Джеймс Чедвик сделал открытие, которое потрясло научное сообщество и дало новый толчок к изучению свойств урана. Он обнаружил новую элементарную частицу, которая была названа нейтроном. В 1934 г. американский физик Энрико Ферми начинает опыты по бомбардировке различных химический элементов нейтронами, что привело к появлению в уране новых радиоактивных веществ.

За этими опытами последовали жаркие научные диспуты: были ли открыты новые трансурановые элементы или бомбардировка нейтронами привела к расщеплению ядра урана на изотопы известных уже элементов? Споры не прекращались в течение четырех лет, пока в 1938 г. немецкие ученые Отто Ганн и Фриц Штрассман не установили, что продуктами бомбардировки урана нейтронами являются элементы со свойствами бария и лантана.

Объяснение этому феномену было дано учеными Лизе Майтнер и Отто Фришем в номере английского журнала Nature от 16 января 1939 г., где описывалось деление ядра и приводился расчет выделяемой при этом энергии.

Это событие стало первой ступенью в изучении цепных реакций, происходящих с использованием урана.

Гипотеза о расщеплении ядер урана была подтверждена в лабораториях многих стран. Было доказано, что ядерная реакция может поддерживаться сама собой, поскольку расщепление урана происходит с высвобождением дополнительных нейтронов.

Одновременно с этим информация о проводимых опытах становится засекреченной и ученые разных стран перестают обмениваться своими наработками.

Неоценимый вклад в изучение цепных реакций внесли советские ученые. В 1939–1940 гг. Ю. Б. Харитон, Я. Б. Зельдович, К. А. Петржак и Г. Н. Флеров обнаружили, что процесс деления ядер урана может стать непрерывным, если обогатить элементарный уран его изотопом 235U. Практический смысл этого открытия был подтвержден физиками Чикагского университета, которые под руководством Э. Ферми сконструировали первый ядерный реактор СР-1.

Исследование и создание ядерных реакторов в СССР проводились под руководством академика И. В. Курчатова. 25 декабря 1946 г. был пущен первый советский реактор Ф-1. Он послужил основой для создания более мощных установок. 27 июня 1954 г. в городе Обнинске Калужской области была пущена первая в мире атомная электростанция мощностью 5 МВт.

В настоящее время изучение урана направлено на более эффективное мирное применение внутриатомной энергии, на оптимизацию методов извлечения урана и другие вопросы, носящие прикладной характер. Но кто знает, какие еще тайны хранит в себе этот элемент, перевернувший в XX в. законы физики и заставивший человека по-новому взглянуть на законы природы.

Инвестирование в Уран

Подняться наверх