Читать книгу Физика для «чайников». Несерьезное пособие - Андрей «Dront» Ильин - Страница 6
1 / 5: Механика
И всё-таки: ну зачем нужны все эти упрощения?!
ОглавлениеВсё, наконец-то все приготовления закончили. Теперь, собственно, а зачем всё это было нужно. Считается, что полный венец любой решённой задачи механики, когда всё становится хорошо, – это когда мы можем знать:
а) в какой момент наше подопытное туловище где находится;
б) суметь предсказать его движение в дальнейшем,
или в) по нынешнему его движению показать, что было «до того». (Ну прямо как детектив.)
Вроде бы кажется страшно сложным, но строгая математика тут грозит пальцем: для неё ничего сложного здесь нет. Почему? Потому, что можно выделить всего три основных вида движения: равномерное прямолинейное, неравномерное и равномерное движение по окружности.
Равномерное прямолинейное – это как на шоссе. Втопил газу до круиз-контроля на 120 – и езжай хоть целый день, если дорога достаточно длинная. Всё время едешь постоянно 120 км/ч – значит, движешься равномерно. И прямолинейно, если без крутых поворотов. Если 120 вдарить на кольцевой дороге, получится движение по окружности. А если нажать на тормоз и держать педаль в одном положении, пока не остановишься – получится неравномерное движение. Если совсем точно – равнозамедленное: тормозишь, едешь всё медленнее и медленнее, причём каждую секунду скорость понижается одинаково.
То есть, по-русски: равномерное – значит, за любой промежуток времени у тебя будет одно и то же перемещение. Если взять ту же машину, то за каждый час это будет 120 километров ровно, за каждую минуту – 20 км, ну и так далее. Неравномерное – это всё, что отличается от равномерного. За один час проехал 119 км, а за второй 120, – всё, если считать строго, это уже неравномерно. Движение по окружности стоит особняком: там перемещение получается всегда меньше, чем любой из путей (особенно если приезжаешь ровно в ту же точку, откуда уехал). Но если скорость по значению остаётся одна и та же, то оно будет равномерным.
Да. Скорость. К счастью, это та же самая скорость, с которой привыкли обычно иметь дело. Только в физике мерят её не в километрах в час, а в метрах в секунду. Это если говорить о её значении, или – по-умному – о модуле. Да-да, тот самый модуль с палочками из математики. К сожалению, он не полностью определяет скорость в физике. А полностью будем определять, если ещё и зададим ей направление. То есть – по-умному – получается вектор. Отрезок со стрелочкой: если знаешь, куда он направлен и сколько у него длина, только тогда всё хорошо. Тогда скорость известна.
А если рядом с нашей едущей машиной проедет другая? Тоже со скоростью 120 километров в час? Тогда получится, что относительно нас она стоит на месте. Потому что скорости одинаковые. Если будет чуть быстрее (например, 121) – то очень медленно станет двигаться вперёд. Чуть медленнее (ну, скажем, 119) – так же медленно, но назад. То есть скорость нашей машины вычитается из той, второй. 121 минус 120 будет 1 – понятно, медленно ползёт вперёд. А 119 – 120 будет -1 (минус один). Что означает – она по-прежнему едет, но не вперёд, а в противоположную сторону, задом наперёд. Что нам и кажется – она как бы медленно даёт задний ход с той же скоростью 1 км/ч.
Вкратце и поумнее: при равномерном прямолинейном движении тело за один и тот же промежуток времени совершает одинаковые перемещения. Если хотя бы для одного промежутка времени это не соблюдается, движение не считается равномерным. Скорость при равномерном движении – это перемещение, которое совершили, делить на время, за которое оно было совершено, т.е. тоже вектор, причём постоянный по модулю. Единица измерения – метр в секунду (м/с). При движении двух тел в некоторой системе отсчёта, чтобы посчитать скорость движения второго тела относительно первого, достаточно из скорости второго тела вычесть скорость первого.