Читать книгу Генетика на пальцах - Андрей Шляхов - Страница 4

Глава 2
Гены и их свойства

Оглавление

Ген представляет собой участок молекулы ДНК, в котором закодирована последовательность синтеза одного конкретного белка или же одной конкретной РНК. Молекулы ДНК условно можно сравнить с книгами, а гены – с абзацами.

Один ген отвечает за синтез одного химического вещества, и потому он считается структурной и функциональной единицей наследственности – структурной как часть молекулы ДНК и функциональной, поскольку выполняет одну конкретную функцию. Впрочем, классическая концепция генетики («один ген – один белок – один признак») довольно условна и далеко не всегда верна, но об этом мы поговорим немного позже.

Примечательно, что термин «ген» появился в 1909 году, задолго до того, как ученые узнали о свойствах и структуре ДНК. Изначально ген был условным понятием, обозначающим нечто, определяющее один конкретный признак организма. Ученым был нужен термин, определяющий единицу наследственности. Без этого термина невозможно было выстраивать гипотезы и вести научный поиск.

Кстати говоря, с атомами произошла такая же история. Понятие об атоме как о наименьшей неделимой частице материи впервые было сформулировано еще древнегреческими и древнеиндийскими философами. Научные же определения понятий молекулы и атома были приняты только в 1860 году. А приемлемая с научной точки зрения модель атома появилась лишь в 1913 году. Таким образом, атом не имел четкого научного объяснения более двух тысяч лет, что не мешало оперировать этим понятием!

Логическим путем ученые пытались установить количество генов человека. Данные «широко плавали» – от ста тысяч до миллиона, но все сходились на том, что генов очень и очень много, а оттолкнувшись от этого, приходили к выводу, что носителями наследственной информации должны быть белки, а не ДНК.

Молекулы многих белков по своим размерам могут сравниться с молекулами ДНК, но при этом они состоят из двадцати разных аминокислот[9], а молекулы ДНК образованы четырьмя нуклеотидами (выделять составные части гигантских молекул ученые научились гораздо раньше, чем изучили их структуры). «Двадцать аминокислот дают несравнимо большее количество комбинаций, чем четыре нуклеотида, следовательно, носителями наследственной информации являются белки», – говорили сторонники белковой природы гена, и это утверждение трудно было оспорить. В то время (первая половина ХХ века) никто и помыслить не мог о том, что счет нуклеотидам в молекуле ДНК может идти даже не на миллионы, а на сотни миллионов! Да, наследственная информация записана всего четырьмя буквами, но в очень и очень толстых книгах.

Так сколько же у нас генов? В наше время принято считать, что у человека их около двадцати тысяч. Всего-навсего…

Знакомо ли вам выражение «и на старуху бывает проруха»? Такая вот «проруха» произошла с создателем эволюционной теории Чарльзом Дарвином, который первым попытался всерьез разобраться в принципах наследственности и объяснить, как именно происходит наследование признаков от родителей.

Предупреждение: дальше читайте не просто внимательно, а очень внимательно, потому что за описанием гипотезы Дарвина последует вопрос.

Для объяснения механизма наследственности Дарвин придумал геммулы, некие гипотетические частицы, обеспечивающие наследование признаков. Эти самые геммулы, по мнению ученого, образовывались во всех клетках организма, а затем поступали в кровь и с током крови доставлялись в половые железы. Каждая «новорожденная» половая клетка получала полный набор геммул от всех клеток организма, иначе говоря – получала всю наследственную информацию, которая затем передавалась потомству.

Предположение Дарвина выглядело весьма логично. К тому же оно объясняло наследование приобретенных признаков. Изменившиеся клетки (суть нового признака заключается в изменении клеток) вырабатывают новые геммулы, отличающиеся от тех, которые они вырабатывали прежде.

По неизвестным нам причинам Дарвин не удосужился получить практическое подтверждение своей гипотезы. То ли другие дела помешали, то ли гипотеза казалась ему настолько крепкой, что проверять ее на практике не было необходимости.

А теперь вопрос: как бы вы проверили дарвиновскую гипотезу?

Примечание. Вы ученый-биолог. У вас есть лаборатория со всем необходимым, а также есть возможность использовать подопытных животных, ваши возможности практически неограниченны. Cтарайтесь, чтобы ваш эксперимент был как можно проще. Незачем усложнять, если можно обойтись без этого.

Идем дальше. Пора нам познакомиться с геном поближе, узнать о его свойствах.

Главным свойством гена является его дискретность. Это слово можно перевести как «обособленность». Каждый ген существует сам по себе. Гены не могут соединяться друг с другом и в результате образовывать новый ген. Одни гены могут подавлять другие, не давая им возможности выполнять свою функцию, но не могут с ними соединяться. Ген един и неделим! Именно дискретность делает ген структурной и функциональной ЕДИНИЦЕЙ наследственности.

Из дискретности логически вытекает другое свойство генов – их стабильность. Гены способны функционировать, не изменяя собственной структуры. Каким ген был, таким он и остается после считывания с него наследственной информации.

Однако в то же время стабильность генов сочетается с их лабильностью – способностью изменяться.

Напрашивается вопрос: «Как ген может одновременно быть и стабильным, и лабильным?! Это же взаимоисключающие понятия!».

Да, взаимоисключающие. Но, тем не менее, гену присущи оба этих свойства.

Давайте разбираться. Сам по себе, как структурная единица, как фрагмент молекулы ДНК, ген стабилен. В процессе выполнения своих функций ген никак не изменяется.

Изменяется ген при копировании молекулы ДНК или же при ее повреждении. Мы еще будем говорить об этом, а пока что важно усвоить следующее – гены способны изменяться в результате каких-то «глобальных» процессов, происходящих со всей молекулой ДНК. Но сам по себе ген стабилен. Во время работы, то есть во время считывания информации, с ним ничего не происходит.

Одни и те же гены, то есть гены, отвечающие за развитие одного признака, могут существовать в различных формах, которые называются аллелями (не путайте аллели с аллеями!). Обычно аллельных генов два, один получен от матери, а другой – от отца. По каждому кодируемому признаку мы имеем парный набор генов.

Аллельные гены могут подавлять друг друга, то есть блокировать считывание информации с парного гена. Так, например, ген карих глаз подавляет ген голубых глаз. Если у отца глаза карие, а у матери и ее родителей – голубые, то у ребенка будут карие глаза. В свое время мы рассмотрим принципы наследования признаков более подробно. Пока что надо запомнить, что одни и те же гены могут существовать в различных формах (аллелях) и что аллельные гены могут друг друга подавлять. Кто кого подавляет, предопределено изначально, а не определяется конкретной ситуацией. Иначе говоря, ген карих глаз будет подавлять ген голубых глаз у всех людей.

Конкуренция в рамках пары генов приводит к тому, что одни признаки наследуются от отца, а другие от матери. Но при этом никогда в наследовании не будет половинчатости! Невозможно унаследовать один признак наполовину от матери и наполовину от отца, потому что гены не смешиваются друг с другом даже в парах, отвечающих за один и тот же признак. Гены никогда не смешиваются! Образно говоря, у ребенка голубоглазой матери и кареглазого отца будут голубые (в отдельных случаях такое возможно, и мы это в свое время обсудим) или карие глаза, но не темно-голубые или светло-карие.

«Сила» гена, его способность подавлять парный ген, называется экспрессивностью. Экспрессивность определяет степень выраженности гена в кодируемом им признаке. Чем ген экспрессивнее, тем сильнее он подавляет своего аллельного собрата.

Гены специфичны, каждый ген кодирует синтез одного конкретного белка, то есть отвечает за один определенный признак. Один ген – один белок – один признак… Однако настало время внести уточнение в это утверждение.

Предупреждение: читаем вдумчиво и ничему не удивляемся! Не бойтесь, что поначалу в голове образуется какая-то «каша», к концу этой главы вся «каша» разложится по тарелочкам!

Некоторые гены обладают множественным действием, то есть способностью влиять на несколько признаков. Такая «многогранность» называется плейотропией.

Плейотропия может быть первичной или вторичной.

При первичной плейотропии один ген на самом деле влияет на несколько признаков. Например, у человека ген, определяющий рыжую окраску волос, одновременно обуславливает более светлую окраску кожи и наличие на ней веснушек.

При вторичной плейотропии ген, по сути дела, влияет на один признак, от которого напрямую зависит несколько других признаков. Классическим примером вторичной плейотропии является нарушение синтеза белка крови гемоглобина, приводящее к развитию заболевания, называемого серповидноклеточной анемией. «Дефективный», то есть измененный ген, вызывает нарушение синтеза гемоглобина и на этом «умывает руки». Дальше действует «дефективный» гемоглобин, который приводит к таким вторичным проявлениям, как невосприимчивость к малярии, анемия,[10] увеличение печени и селезенки, поражение сердца и головного мозга.

Важно понимать, что правилу «один ген – один белок – один признак» плейотропия совершенно не противоречит. Белок-то в результате считывания информации с гена вырабатывается один, просто он может принимать участие в нескольких процессах, происходящих в организме. Давайте скажем так: «один ген – один белок (или одна РНК)», и эта концепция будет верной для любого, без исключения. Вы с этим согласны? Наверное, согласны, ведь с помощью одной матрицы два разных вещества не наштампуешь…

А знаете ли вы, сколько разновидностей белков синтезируется в организме человека? Более ста тысяч! А генов у нас, как вы уже знаете, примерно впятеро меньше. Получается, что в среднем один ген должен обеспечивать синтез пяти белков. Но матрица-то одна! Код один!

Да, матрица одна, честное слово, одна. А «продуктов», тем не менее, она дает несколько.

Как понимать такой «парадокс»?

Обратите внимание на то, что слово «парадокс» взято в кавычки, потому что на самом деле никакого парадокса нет. Генетика парадоксов не признает, а если что-то и кажется нам парадоксом, так это от недостатка знаний.

Внимание! Сейчас мы с вами прикоснемся к самым сокровенным тайнам генетики и узнаем, что представляет собой уникальный процесс, который называется альтернативным сплайсингом.

Слово «альтернативный» означает, что явление содержит альтернативу, то есть допускает одну из нескольких возможностей. А термин «сплайсинг» образован от английского слова «сплайс», означающего сращивание или склеивание концов.

Альтернативный сплайсинг представляет собой процесс вырезания определенных фрагментов из молекулы матричной РНК в ходе процесса ее созревания. Разумеется, ничего общего с созреванием плодов и ягод созревание РНК не имеет. Суть этого процесса заключается в том, что из молекул РНК вырезаются лишние, ненужные участки, не участвующие в синтезе белка. Эти лишние участки образуются как вспомогательные в ходе «сборки» молекулы РНК на ДНК-матрице. В процессе синтеза РНК они играют определенную роль, а в готовой матрице только мешают. Чисткой матричной РНК, как и прочими делами, связанными с молекулами нуклеиновых кислот, занимаются специальные ферменты – РНК или белки.

Иногда после удаления ненужного фрагмента разрезанная молекула РНК может быть «сшита» с пропуском какого-либо нужного, активного участка. Такие «ошибки» приводят к тому, что на сшитой матрице РНК синтезируется другой белок, а не тот, для синтеза которого матрица изначально предназначалась.

Один ген – одна изначальная матрица – разные белки. Спасибо альтернативному сплайсингу! И при этом правило «один ген – один белок» по сути не нарушается, ведь первоначальная РНК-матрица никаких отклонений от заданного кодом стандарта не имеет.

Обратите внимание на то, что альтернативный сплайсинг является контролируемым процессом, а не стихийно-хаотическим. Да, разумеется, иногда в процессе созревания молекул РНК могут происходить случайные ошибки, являющиеся одним из проявлений изменчивости, но в целом сплайсинг находится под неусыпным наблюдением системы белков, называемых факторами сплайсинга. «Ошибки» альтернативного сплайсинга на деле таковыми не являются, поскольку они заранее запрограммированы и позволяют «экономить» – синтезировать несколько белков на основе одного генетического кода. Без альтернативного сплайсинга наш генетический материал был бы впятеро больше.

Допустим, что вы инженер-строитель и застраиваете целую улицу однотипными домами по одному-единственному проекту. Но всякий раз перед началом строительства ваши помощники вносят в проект определенные изменения, благодаря которым дома получаются не однотипными, а индивидуальными. Вы контролируете своих помощников и приступаете к строительству только после того, как убедитесь, что изменения не повредят делу. То есть ваш сплайсинг безопасен и полезен, потому что в результате улица получается не уныло-однотипной, а красивой. Это же совсем не то, если нерадивые строители сделают что-то не по технологии и в результате постройка обрушится.

Об инженерах и помощниках мы заговорили не случайно, потому что по выполняемым функциям все гены подразделяются на структурные и функциональные. Структурные гены можно сравнить с рабочими, а функциональные – с инженерами-начальниками.

Простые рабочие парни – структурные гены – содержат информацию о белках или РНК, которую они добросовестно передают по назначению. Функциональные гены регулируют работу структурных генов, можно сказать – руководят ими. В зависимости от вида регуляции функциональные гены подразделяются на гены-модуляторы, гены-регуляторы и гены-операторы.

Гены-модуляторы усиливают или ослабляют действие структурных генов. Те, которые ослабляют, называются ингибиторами[11], а те, которые усиливают, – интенсификаторами.

Ген-оператор «включает» и «выключает» структурные гены для считывания с них информации. Гены «включаются» при необходимости, а не работают постоянно. Ген-оператор можно сравнить с бригадиром, который руководит рабочими на месте. Бригаде генов помогает высококвалифицированный мастер – фермент РНК-полимераза, который запускает процесс синтеза РНК.

Ген-регулятор руководит работой гена-оператора. Он содержит информацию, на основе которой синтезируется особый белок-репрессор, блокирующий ген-оператор. Как только потребность в производимом продукте удовлетворяется, ген-регулятор останавливает работу операторов, а при необходимости запускает ее снова.

Задумывались ли вы когда-нибудь о том, как именно происходит блокировка или нейтрализация действия химических веществ в живых организмах? Путем связывания молекул блокирующих белков с их молекулами. Можно сказать, что белковая молекула обхватывает молекулу блокируемого вещества «руками и ногами» и таким образом не дает ему выполнять свои функции. Кстати говоря, точно так же работают и антитела – белки иммунной системы, вырабатываемые против чужеродных агентов. Стоит только антителу прикрепиться к вирусу, как тот «выпадает в осадок», теряет способность проникать в клетки.

На сегодняшний день принято считать, что примерно 94 % генов человека подвержено альтернативному сплайсингу. Сплайсинг не только позволяет «экономить» гены, но и тщательнее контролировать синтез белков и РНК, ведь добавление дополнительных этапов повышает уровень контроля.

Имейте в виду, что альтернативный сплайсинг может проявляться не только удалением каких-то функционирующих участков РНК-матрицы, но и оставлением в ней вспомогательного участка, который, по идее, нужно было бы удалить.

ОТВЕТ НА ВОПРОС. Гипотеза геммул была опровергнута посредством эксперимента, который поставил двоюродный брат Чарльза Дарвина Фрэнсис Гальтон. Он переливал кровь от кроликов с темной окраской шерсти кроликам со светлой шерстью. По логике геммулы темной окраски, якобы содержащиеся в перелитой крови, непременно должны были попасть в половые железы кроликов со светлой шерстью и проявить себя в их потомстве. Однако потемнения шерсти у потомства не произошло. Так было доказано, что никаких геммул не существует.

9

  Аминокислотами называются химические соединения, в молекуле которых одновременно содержатся карбоксильные группы и аминогруппы.

10

  Анемиями называются заболевания крови, сопровождаемые уменьшением содержания гемоглобина и эритроцитов.

11

  Ингибицией называется подавление, замедление или прекращение каких-либо реакций, процессов и т. п.

Генетика на пальцах

Подняться наверх