Читать книгу Энергетические аспекты международной политики - Андрей Сизов - Страница 6

Глава 1. Эволюция энергетики в контексте международной политики
Энергетические переходы, их классификация и особенности

Оглавление

Как было отмечено выше, за XIX–XX вв. в мировой энергетике можно выделить три этапа развития, каждый из которых вызвал соответствующие изменения промышленной и социальной структуры, а также политических воззрений и идеологий. Смену каждого этапа новым принято называть энергетическим переходом, определяющим значительные качественные изменения мировой энергетической системы[14].

Термин «энергетический переход» впервые был использован в США после нефтяного кризиса 1973 г. После второго «нефтяного шока» 1979 г. содержание термина «энергопереход» стали связывать с приоритетным использованием ВИЭ[15]. Популяризацию термина «энергопереход» связывают с именем канадско-чешского исследователя Вацлава Смила[16].

В истории человечества выделяют четыре энергоперехода:

1. Первый энергопереход – от биомассы (дрова, древесный уголь, бытовые и сельскохозяйственные отходы, др.) к углю (доля угля в выработке первичной энергии в 1840 г. – 5 %, в 1900 г. – 50 %);

2. Второй энергопереход – увеличение доли нефти в выработке первичной энергии (1915 г. – 3 %, 1975 г. – 45 %);

3. Третий энергопереход – расширение использования газа (1930 г. – 3 %, 2017 г. – 23 %);

4. Четвертый энергопереход – переход к ВИЭ: энергии ветра, Солнца, приливов и т. д. (2017 г. – 3 %).

Предпосылки для четвертого энергоперехода были заложены еще в 1980–1990 гг. Было очевидно, что антропогенное влияние на климат из-за использования углеродных энергоресурсов в масштабах планеты становится критическим, а неравномерность распределения традиционных энергоресурсов несет в себе угрозу энергетической безопасности развитых стран. Тем не менее только в XXI в. технологии позволили достичь приемлемых и конкурентных уровней КПД ВИЭ и сделать их действительно реальной альтернативой источникам традиционным.

В свете начавшегося в 2022 г. мирового энергетического кризиса тенденции четвертого энергоперехода становятся разнонаправленными и неоднозначными. Так, МЭА отмечает к ноябрю 2022 г. многократный относительно предыдущих лет рост инвестиций в возобновляемую энергетику (до уровня в $1,15 трлн) и прогнозирует их объем к 2030 г. на уровне, превышающем $2 трлн в год (см. рис. 2).


Рис. 2.

Государственные расходы на поддержку инвестиций в экологически чистую энергию и в краткосрочные меры по обеспечению доступности энергии для потребителей, $ млрд

Источник: МЭА.


МЭА в своем отчете от декабря 2022 г.[17] прогнозирует кардинальное изменение структуры баланса производства электроэнергии. Согласно прогнозу ВИЭ в начале 2025 г. станут основным источником электроэнергии на планете. Флагманами в данном направлении, как ожидается, будут Китай, ЕС, США и Индия, которые должным образом проводят реформы рынка и нормативного регулирования.

Следует учитывать, что 95 % указанных МЭА объемов инвестиций в возобновляемую и низкоуглеродную энергетику будут принадлежать развитым странам, в первую очередь США и странам ЕС. Таким образом, в современных условиях можно констатировать растущую дифференциацию между переходящим на безуглеродную энергетику глобальным Севером и увеличивающим объем использования традиционных энергоресурсов глобальным Югом (см. рис. 3).


Рис. 3.

Инвестиции в возобновляемую энергетику в развитых и развивающихся странах по состоянию на ноябрь 2022 г., $ млрд

Источник: МЭА.


МЭА прогнозирует увеличение абсолютных объемов использования традиционных источников энергии, таких как газ, нефть и уголь, на период до 2030 г. (при снижении их доли в общем производстве). При этом агентство прогнозирует пик потребления нефти в абсолютных значениях в 2030 г.

В целом, с учетом продолжающегося энергоперехода, в предстоящие 30 лет в энергетике ожидаются различные, в том числе крупные, технологические прорывы, но новая технологическая революция маловероятна[18]. Направления некоторых таких технологических прорывов уже заложены: развитие и совершенствование технологий использования ВИЭ, газификация угля, промышленная добыча газовых гидратов и др. Данный вектор развития, обеспечивающий как снижение «экологической нагрузки», так и расширение ресурсной базы (в том числе возобновляемой), сможет на долгий период сдвинуть пики добычи традиционных энергоресурсов и одновременно снизить волатильность цен на энергию и замедлить их повышение.

Отдельно стоит отметить прорывные технологии – например, накопители энергии и топливные элементы новых типов, позволяющие использовать такие виды энергоносителей, как метан и водород (в настоящее время слабо востребованные). Ожидается, что, придав импульс развитию мобильной энергетики и «зеленого» транспорта, эти технологии поспособствуют существенному смещению приоритетов между централизованным и децентрализованным энергоснабжением, повышая энергетическую мобильность и предоставляя человечеству расширенные возможности для освоения новых территорий.

Общество и энергетика переживают очередную структурную перестройку. Современный глобальный энергетический кризис существенным образом влияет на три группы факторов, характеризующих технологический, демографический и социальный тренды глобального развития.

Технологический тренд воздействует на эффективность использования энергии, начиная от добычи и использования первичных энергоресурсов до производства, поставки и потребления вторичной энергии.

Демографический тренд влияет на общий объем спроса на энергетических рынках (при этом нельзя забывать, что в последние годы наблюдается тенденция к замедлению общего прироста населения, а в развитых странах зачастую и к его убыли).

Социальный тренд воздействует на качественный рост потребности людей в новой продукции, технологиях, информации, предметах личного пользования и т. д.

Компетентный прогноз ожидаемого состава и масштабов применения новых энергетических технологий в период до 2050 г. в свое время дало МЭА[19]. Утверждается, что восемь классов технологий (более 120 наименований) преобразования энергии и девять классов (почти 170 видов) технологий использования энергии способны решить стоящие перед энергетикой задачи по меньшей мере до 2030 г.

Основной упор в своем докладе и перечне технологий МЭА делает на расширение использования ВИЭ, повышение их доступности и распространения с общим трендом на внедрение технологий четвертого энергоперехода.

Отдельно стоит отметить уникальную роль России в таких условиях. Помимо колоссальных запасов традиционных углеводородных источников энергии, Россия, в отличие от большинства стран Запада, имеет значительный ресурс неиспользованного гидропотенциала, что может стать ключом к обеспечению энергоперехода и снижению карбонового следа в нашей стране. Если в странах ЕС, США, Японии и других развитых государствах гидропотенциал используется на 60–80 %, то в России в настоящее время этот показатель составляет около 20 %.

14

Grübler, A. (1991). «Diffusion: Long-term patterns and discontinuities». Technological Forecasting and Social Change. 39 (1–2): 159–180.

15

Duccio Basosi, «The world's energy past, present and future at the 1981 United Nations Conference on New and Renewable Sources of Energy»; https://energyhistory.eu/en/special-issue/lost-transition-worlds-energy-past-present-and-future-1981-united-nations-conference.

16

Smil, V. Energy and Civilization: A History / V. Smil. Cambridge: MIT Press, 2017. – 568 p. Smil, V. Energy Transitions: History, Requirements, Prospects. Oxford: Praeger, 2010. – 178 p. Smil, V. Energy in World History / V. Smil. – Boulder: Westview Press, 1994. – 300 p.

18

Эволюция мировых энергетических рынков и ее последствия для России / под ред. А. А. Макарова, Л. М. Григорьева, Т. А. Митровой. – М.: ИНЭИ РАН – АЦ при Правительстве РФ, 2015.

19

Energy Technology Perspectives 2012. IEA. Paris. 2012.

Энергетические аспекты международной политики

Подняться наверх