Читать книгу The Romance of Modern Invention - Archibald Williams - Страница 8

Wireless Telephony.

Оглавление

Table of Contents

In days when wireless telegraphy is occupying such a great deal of the world’s attention, it is not likely to cause much astonishment in the reader to learn that wireless transmission of speech over considerable distances is an accomplished fact. We have already mentioned (see “Wireless Telegraphy”) that by means of parallel systems of wires Sir William Preece bridged a large air-gap, and induced in the one sounds imparted to the other.

Since then two other methods have been introduced; and as a preface to the mention of the first we may say a few words about Graham Bell’s Photophone.

In this instrument light is made to do the work of a metal connection between speaker and listener. Professor Bell, in arranging the Photophone, used a mouthpiece as in his electric telephone, but instead of a diaphragm working in front of a magnet to set up electric impulses along a wire he employed a mirror of very thin glass, silvered on one side. The effect of sound on this mirror was to cause rapid alterations of its shape from concave to convex, and consequent variations of its reflecting power. A strong beam of light was concentrated on the centre of the mirror through a lens, and reflected by the mirror at an angle through another lens in the direction of the receiving instrument. The receiver consisted of a parabolic reflector to catch the rays and focus them on a selenium cell connected by an electric circuit with an ordinary telephone earpiece.

On delivering a message into the mouthpiece the speaker would, by agitating the mirror, send a succession of light waves of varying intensity towards the distant selenium cell. Selenium has the peculiar property of offering less resistance to electrical currents when light is thrown upon it than when it is in darkness: and the more intense is the light the less is the obstruction it affords. The light-waves from the mirror, therefore, constantly alter its capacity as a conductor, allowing currents to pass through the telephone with varying power.

In this way Professor Bell bridged 800 yards of space; over which he sent, besides articulate words, musical notes, using for the latter purpose a revolving perforated disc to interrupt a constant beam of light a certain number of times per second. As the speed of the disc increased the rate of the light-flashes increased also, and produced in the selenium cell the same number of passages to the electric current, converted into a musical note by the receiver. So that by means of mechanical apparatus a “playful sunbeam” could literally be compelled to play a tune.

From the Photophone we pass to another method of sound transmission by light, with which is connected the name of Mr. Hammond V. Hayes of Boston, Massachusetts. It is embodied in the Radiophone, or the Ray-speaker, for it makes strong rays of light carry the human voice.

Luminous bodies give off heat. As the light increases, so as a general rule does the heat also. At present we are unable to create strong light without having recourse to heat to help us, since we do not know how to cause other vibrations of sufficient rapidity to yield the sensation of light. But we can produce heat directly, and heat will set atoms in motion, and the ether too, giving us light, but taking as reward a great deal of the energy exerted. Now, the electric arc of a searchlight produces a large amount of light and heat. The light is felt by the eye at a distance of many miles, but the body is not sensitive enough to be aware of the heat emanating from the same source. Mr. Hayes has, however, found the heat accompanying a searchlight beam quite sufficient to affect a mechanical “nerve” in a far-away telephone receiver.

The transmitting apparatus is a searchlight, through the back of which run four pairs of wires connected with a telephone mouthpiece after passing through a switch and resistance-box or regulator. The receiver is a concave mirror, in the focus of which is a tapering glass bulb, half filled with carbonised filament very sensitive to heat. The tapering end of the bulb projects through the back of the mirror into an ear tube.

If a message is to be transmitted the would-be speaker turns his searchlight in the direction of the person with whom he wishes to converse, and makes the proper signals. On seeing them the other presents his mirror to the beam and listens.

The speaker’s voice takes control of the searchlight beam. The louder the sound the more brilliantly glows the electric arc; the stronger becomes the beam, the greater is the amount of heat passed on to the mirror and gathered on the sensitive bulb. The filament inside expands. The tapering point communicates the fact to the earpiece.

This operation being repeated many times a second the earpiece fills with sound, in which all the modulations of the far-distant voice are easily distinguishable.

Two sets of the apparatus above described are necessary for a conversation, the functions of the searchlight and the bulb not being reversible. But inasmuch as all large steamers carry searchlights the necessary installation may be completed at a small expense. Mr. Hayes’ invention promises to be a rival to wireless telegraphy over comparatively short distances. It can be relied upon in all weathers, and is a fast method of communication. Like the photophone it illustrates the inter-relationship of the phenomena of Sound, Light, and Heat, and the readiness with which they may be combined to attain an end.

Next we turn from air to earth, and to the consideration of the work of Mr. A. F. Collins of Philadelphia. This electrician merely makes use of the currents flowing in all directions through the earth, and those excited by an electric battery connected with earth. The outfit requisite for sending wireless spoken messages consists of a couple of convenient stands, as many storage batteries, sets of coils, and receiving and transmitting instruments.

The action of the transmitter is to send from the battery a series of currents through the coils, which transmit them, greatly intensified, to the earth by means of a wire connected with a buried wire-screen. The electric disturbances set up in the earth travel in all directions, and strike a similar screen buried beneath the receiving instrument, where the currents affect the delicate diaphragm of the telephone earpiece.

The system is, in fact, upon all fours with Mr. Marconi’s, the distinguishing feature being that the ether of the atmosphere is used in the latter case, that of the earth in the former. The intensity coils are common to both; the buried screens are the counterpart of the aërial kites or balloons; the telephone transmitter corresponds to the telegraphic transmitting key; the earpiece to the coherer and relay. No doubt in time Mr. Collins will “tune” his instruments, so obtaining below ground the same sympathetic electric vibrations which Mr. Marconi, Professor Lodge, or others have employed to clothe their aërial messages in secrecy.

The Romance of Modern Invention

Подняться наверх