Читать книгу Таблица Менделеева. Элементы уже близко - Аркадий Курамшин - Страница 8
6. Углерод
ОглавлениеПоскольку любой химик (как, впрочем, и любой человек) является углеродной формой жизни, об углероде он может разговаривать часами. Любой, кроме химиков-органиков. Они, конечно, тоже углеродные формы жизни, внешне неотличимые от людей, но поскольку они работают над получением новых соединений, содержащих линейные, разветвленные и замкнутые цепочки из атомов углерода и полагают, что все остальные элементы… периодической системы нужны лишь для исполнения грандиозного замысла – построения главной углеродной цепочки, которая их волей свяжет и скуёт все остальные углеродные цепи, – они могут говорить об углероде сутками.
Органическая химия, конечно, интересна, и действительно об органических соединениях можно говорить много и долго (говорю об этом ответственно, до того, как стать химиком-элементооргаником, я тоже был органиком), но и в виде простых веществ, веществ, состоящих только из атомов углерода, углерод весьма интересен. Углерод образует много разновидностей простых веществ – аллотропных модификаций. Кажется, что в последнее время каждая из таких модификаций получает своё «десятилетие славы» – в 1990-е годы своеобразным «хитом» стали полые «мячики» из атомов углерода – фуллерены, в начале 2000-х внимание химиков и специалистов по материаловедению приковали углеродные нанотрубки, и, наконец, последнее десятилетие, после вручения в 2010-м Нобелевской премии по физике Андрею Гейму и Константину Новосёлову, самой «хайповой» формой углерода стал графен – двумерный материал или слой углеродов толщиной в один атом.
Однако, говоря об углероде, больше бы хотелось рассказать не о его новых обличьях, а о представителях той его формы, которые известны как лучшие друзья девушек, – об алмазах. Да, в английской песне, которую пела Норма Джин Бейкер (более известная как Мерилин Монро), речь шла об алмазах; бриллианты – те же алмазы, но огранённые, с правильной формой, упомянуты в более поздней песне, которую пела Вера Галушка (она же Вера Брежнева).
Тысячелетиями алмазы ассоциировались с достатком и богатством – блеск ограненных камней украшал перстни вельмож, короны монархов и тиары понтификов. К сожалению, у алмазов есть и своя темная сторона – почти у каждого крупного камня есть своя кровавая история, известны случаи, когда алмазами небольшого размера финансировались локальные конфликты и небольшие гражданские войны.
Твёрдость алмазов и блеск граней бриллиантов многие века заставлял алхимиков и химиков пытаться получать эти камни искусственным путём. Первый удачный синтез алмаза был осуществлен почти одновременно в США и Швеции. Для синтеза исследователи воспользовались тем способом, с помощью которого алмазы формируются в земной коре, – первая технология получения искусственных алмазов основывалась на превращении графита в алмаз при высоких температурах (более 3000 °C) и высоких давлениях (более 130 атмосфер). Демонстрация возможностей получения алмазов впечатляла, но, увы, затраты энергии на создание температуры и давления, необходимых для такого получения алмазов, не позволяли рассматривать новую технологию как способ промышленного производства – по расходам на их получение первые синтетические алмазы стоили гораздо дороже, чем алмазы природного происхождения. С той поры способ получения алмазов сжатием при высокой температуре был модернизирован, использование катализаторов позволяет снизить и давление, и температуру синтеза. Конечно, этот способ не идеален – если кристалл алмаза в пару микрон диаметром можно вырастить за пару минут, то алмаз в один карат нужно растить несколько недель.
Тем не менее разработанная технология означает, что в настоящее время появилась возможность синтезировать алмазы, практически неотличимые от природных, из любого углеродсодержащего материала. Конечно, отличить природные алмазы, сформировавшиеся в кимберлитовых трубках, от алмазов, синтезированных, скажем, из наших волос, можно с помощью специального оборудования (например, определив их изотопный состав), но принципиальное значение такая возможность представляет только для алмазов, поступающих на рынок ювелирных изделий (природные алмазы дороже синтетических) – химические и физические свойства синтетических алмазов полностью идентичны свойствам природных камней.
С точки зрения химика или физика, описывая физические, химические и электронные свойства алмазов, мы рискуем слишком часто использовать превосходную форму сравнения. До настоящего времени алмаз является самым твёрдым материалом, известным человеку, и одним из самых химически устойчивых веществ – он выдерживает воздействие самых сильных кислот. У алмаза также наиболее высокая теплопроводность из известных материалов, он легко рассеивает тепло, поэтому алмаз всегда прохладен на ощупь. Благодаря распределению электронов алмаз можно считать хрестоматийным примером диэлектрика, и опять же благодаря своему электронному строению алмаз – твердый материал с идеальной пропускаемостью электромагнитного излучения в широкой области спектра. Все эти свойства делают алмазы лучшими друзьями не только девушек, но и учёных. Твердость и химическая стойкость алмаза позволяют применять его для изготовления защитных покрытий, устойчивых к истиранию, химической коррозии и радиационному повреждению. Высокая теплопроводность и диэлектрические свойства идеально подходят для изготовления электроники. Прозрачность алмаза позволяет делать из него оптические устройства, а биологическую совместимость алмаза можно использовать, изготавливая покрытия для имплантов. Эти свойства алмазов известны несколько веков, почему же случаи практического применения алмазов достаточно редки? Причина этому в том, что размеры природных алмазов, равно как и алмазов синтетических, тех, которые получают при высоких давлениях и высоких температурах, ограниченны и обычно не превышают нескольких миллиметров, и их можно резать и формовать только вдоль определённых граней. Сложности с обработкой алмазов не дают применять их в большинстве областей, в которых их можно было бы применить.
Около десятилетия назад появилось решение, позволяющее расширить возможности применения алмазов – был разработан новый способ их синтеза при низком давлении с помощью метода химического осаждения из газовой фазы. Для этого газовую смесь, состоящую из 99% водорода и 1% метана, пропускают над нитью накала, в результате чего происходит термическая активация компонентов газовой смеси, и в ней образуются реакционноспособные радикалы водорода и метильные радикалы, реакции которых приводят к тому, что газ, осаждаясь на твердой охлажденной подложке, формирует на ней тонкую плёнку из алмаза. Первоначально образуется углеродная плёнка, состоящая из графита и алмаза, но в условиях реакции отложения графит разрушается и остается только алмаз. Формирующиеся алмазные плёнки поликристаллические, они состоят из кристаллитов алмаза микронного размера. Несмотря на непривлекательный внешний вид, такие пленки можно осадить на поверхности, которые отличаются друг от друга и размером, и материалом, и формой, что, очевидно, увеличивает шансы практического применения алмазов.
Конечно, для полноценного применения алмазных плёнок, полученных с помощью химического осаждения паров, ещё необходимо выяснить, какие химические процессы протекают (и протекают ли) там, где алмазная плёнка контактирует с поверхностью, на которую её нанесли, а также уточнить наиболее оптимальный способ применения плёнок – алмазные плёнки предоставят химикам, физикам, специалистам по материаловедению и инженерам многие годы работы. Однако эти перспективы уже сейчас позволяют говорить, что алмазы собираются завести гораздо более широкий круг друзей, чем у них был до недавнего времени.