Читать книгу Пути развития индустриального домостроения. XXI век - Artem Zurabyan - Страница 4

2. КРУПНОПАНЕЛЬНОЕ ДОМОСТРОЕНИЕ

Оглавление

2.1 Горизонтальный «сухой» стык сборных конструкций с ребристой опорной поверхностью и с замкнутыми полостями в теле бетона. Патент RU №2793996 С1. Патент RU №2799225 С1

В многоэтажном крупнопанельном здании обычно несущими являются внутренние стены, которые опираются друг на друга через плиты перекрытий и это основной несущий горизонтальный узел – «платформенный» стык. Обычно в практике крупнопанельного домостроения, усилия с верхнего элемента на нижний передаются через растворный шов толщиной до двадцати миллиметров. Напряжение в бетоне панелей по площади контакта с растворным швом все равно передаётся неравномерно, поскольку растворный шов имеет неодинаковую плотность и разный модуль деформаций.

Одной из мер по совершенствованию платформенного стыка может быть выполнение калиброванных по толщине опорных частей плит, что трудновыполнимо, а также применением тонких растворных швов толщиной до пяти миллиметров, выполненных на цементно-песчаных пастах. Применение пасты так же требует высокой точности изготовления изделий. При монтаже крупнопанельных зданий в зимний период мокрые процессы с раствором или пастой становятся трудно применимы, поэтому другим путем является попытка применять различные прокладки, которые образуют так называемый «сухой» стык.

Не точность форм, а следовательно и изделий, приводит к возникновению зазоров между сборными элементами, которые могут изменяться по длине панелей. Скорее всего это происходит по синусоиде, которая в худшем случае может иметь одну вершину как у верхнего, так и у нижнего элемента. Если предположить, что максимальное отклонение от точных размеров форм и, следовательно, изделий пять миллиметров, то рассматривая различные формы этих отклонений, по длине панели зазор между элементами может достигнуть десять миллиметров.


Рис. 2.1.1 Возможные отклонения от точных размеров опорных поверхностей панелей.


Для того, что бы перекрыть такой зазор нужна прокладка хотя бы толщиной двенадцать миллиметров. Если добиться еще большей точности форм и изделий с отклонением три миллиметра, то возможный зазор уменьшиться до шести миллиметров и толщина прокладки предположим до восьми миллиметров. Даже для таких минимальных отклонений порядка шесть миллиметров прокладки должны иметь очень низкий модуль упругости и при этом передавать немалые напряжения сжатия. Материалы с такими характеристиками подобрать очень сложно, хотя они работают в стесненных условиях. В следствии этого, прокладки для «сухого» стыка могут применены только тогда, когда бетон стен существенно недогружен и неравномерная передача нагрузки не влияет на несущую способность стены в целом. Практически это применимо для крупнопанельных зданий высотой пять – шесть этажей с недогруженными стенами или на верхних этажах домов повышенной этажности.


Рис.2.1.2 Деформации и напряженное состояние панелей с прокладками при зазоре три миллиметра.


Напряженное состояние панели при зазоре шесть миллиметров для двадцати пятиэтажного дома показано на рис.2.2.1, где видно, что прокладка не обеспечивает равномерной передачи напряжений. Напряжение в шве приняты примерно такими как на нижних этажах двадцати пятиэтажных домов. Зазор изменяется по длине панелей с максимальным значением синусоиды шесть миллиметров.

Остается традиционный способ передачи нагрузки при таких зазорах для любой этажности – это применение раствора, когда шов полностью заполняется и постепенно набирает прочность. При этом следует иметь в виду, что необходимая прочность раствора может быть существенно меньше прочности бетона стен, поскольку прочность бетона стен определяется из условия внецентренного сжатия, т.е. в ее середины по высоте. Однако применение раствора, как указывалось, это трудоемкие мокрые процессы снижающие скорость монтажа. Набор прочности раствора происходит медленно, а нагрузка при монтаже возрастает быстрее, что должно быть учтено.

Выходом из такой ситуации может оказаться другой тип «сухого» стыка основанного на деформациях бетона самой стеновой панели. С этой целью необходимо найти пути ослабить бетон опорных поверхностей стен, например, нижний торец стеновой панели поперек ее плоскости может иметь выемки (рис. 2.1.3) с треугольным профилем равномерно распределённые по длине панелей. Между выемками расположены опорные площадки бетонного торца панели. Причём выемки могут иметь различную форму. На рис. 2.1.4 показан фрагмент торца панели с конусными выемками. На рис. 2.1.5 показан разрез опирания стеновых панелей и плит перекрытия с таким стыком. Бетонные площадки опираются на плиты перекрытий через слой прослойки (смазки), снижающий трение между стеновой панелью и бетоном плит перекрытия. Кроме того, торец усиливается сеткой косвенного армирования. Для повышения звукоизоляции после смазки прямо на неё может быть уложен тонкий звукоизолирующий слой минеральной ваты, которая в последствии после монтажа стеновой панели входит в полости, хотя если зазоры небольшие это не обязательно.

Верхний торец стеновой панели может быть выполнен аналогично нижнему торцу, но не во всех случаях это возможно, поэтому его конструкция может быть выполнена иначе как это показано так же на рис. 2.1.5. Бетон верхнего торца стеновой панели ослаблен полостями, например путем внедрения гранул полистирола. Необходимый слой бетона с гранулами небольшой и не превышает двадцать миллиметров, поэтому утопить их в свежую бетонную смесь не представляет собой сложности. Процесс может быть ещё более контролируемым, если на свежую бетонную смесь уложить просто слой такой же бетонной смеси с гранулами. В отличие от пенополистиролбетона гранул не много. Слой у поверхности торца стены должен иметь больше гранул, чем слой под ним. Верхний торец так же покрывается смазкой и усиливается сеткой косвенного армирования.


Рис.2.1.3 Выемки «сухого» стыка в торце стеновой панели


Рис.2.1.4 Торец панели с выемками «сухого» стыка.


Рис. 2.1.5 «Сухой» стык панелей с выемками и гранулами


Работает такая конструкция следующим образом. Стеновая панель нижним торцом опирается на поверхность плиты перекрытия через смазку на которую укладывается звукоизолирующий материал. Чаще всего между плитой перекрытия и нижним торцом стеновой панели возникает зазор, поскольку изделия не могут быть идеально изготовлены. Повышая нагрузку на стены при дальнейшем монтаже здания, опорные площадки нижнего торца стеновой панели, расположенные между выемками в местах, где они соприкасаются с поверхностью плиты через смазку, начинают разрушаться и деформироваться. Смещаясь под нагрузкой стена опирается уже на большое число опорных площадок, которые при дальнейшем повышении нагрузки так же, начиная со слоя смазки, разрушаются и деформируются. Процесс продолжается до тех пор, пока стена не будет полностью загружена. Всегда разрушение происходит начиная от слоя смазки, поскольку верхние слои могут иметь большую площадь сечения и находится в более стеснённых условиях трёхмерного сжатия. Количество и размеры выемок определяются расчётом.

Если устройство выемок затруднительно, например на верхнем торце стены при кассетной технологии, то их можно заменить полостями, образованными гранулами полистирола. В этом случае, при наличии между опирающимися поверхностями зазоров, при передачи нагрузки так же разрушаются вначале соприкасающиеся поверхности торца панели в зоне смазки и затем следующие слои бетона, поскольку сдерживающее влияние на прочность бетона с гранулами растёт и количество полостей в виде гранул у смазки больше. Этот процесс продолжается до полного нагружения стен. Количество гранул полистирола определяется расчётом.

Наличие прорезей или полостей даёт возможность разрушающемуся бетону деформироваться в горизонтальном направлении, выходить из опорных зон и обеспечить необходимые деформации при нагружении. Наличие арматурных сеток усиливает опорную зону стеновых панелей и предотвращает разрушение основного тела бетона стеновых панелей.

Вариант стыка с прорезями, как указывалось, легко осуществим в кассетных установках для нижнего торца стеновых панелей. Вариант с полостями образованными гранулами полистирола больше подходит для верхнего торца стеновых панелей.

Такая конструкция опорных зон панелей многоэтажного крупнопанельных здания позволяет отказаться от применения раствора или паст, т.е. мокрые процессы при монтаже отсутствуют. Более того, конструкция позволяет отказаться и от прокладок между опирающимися панелями. Монтаж здания в этом случае сводится к простой сборке зданий со сваркой закладных деталей.

Естественно, что с увеличением нагрузки по мере монтажа верхних этажей зданий, стыки такого типа равномерно деформируются. Однако следует учесть то, что при расчете двадцати пятиэтажных зданий в горизонтальных швах из раствора возникает растяжение и широко применяемые швы теоретически разрушаются и превращаются в раскрошенную субстанцию, так что здание и в этом случае деформируется.

После подбора формы выемок и количества гранул, целесообразно провести испытание стыка на фрагментах. Это позволит убедиться в правильности расчета. Расчетная нагрузка на стык определяется исходя из необходимости достичь напряжений в шве примерно девяносто килограмм на квадратный сантиметр для двадцати пятиэтажных зданий. Фрагменты должны быть изготовлены таким образом, что бы зазор между нижним и верхним элементом был равен шесть миллиметров или десять миллиметров, если точность изготовления стеновых панелей меньше.


Рис. 2.1.6 Схема испытания фрагментов «сухого» стыка.


2.2 Стык панелей внутренних стен со снижением объема сварочных работ. Заявка ФИПС №2024105472

В многоэтажном крупнопанельном здании обычно внутренние стены, перекрытия и наружные стеновые панели соединяются между собой металлическими сварными накладными связями в виде уголков и пластин. Если наружные стены могут соединяться и с помощью болтовых соединений, то внутренние несущие стены, особенно поперечные, соединяются с помощью сварки, причем расчетной. Это наиболее ответственные узлы соединения, поскольку обеспечивают совместную работу панелей поперечных несущих стен при воздействии горизонтальных нагрузок на многоэтажное здание. Кроме того, эти стыки должны выдержать нагрузку и при прогрессирующем разрушении.

Пути развития индустриального домостроения. XXI век

Подняться наверх