Читать книгу The Nature of the Physical World - Arthur Stanley Eddington - Страница 10
TIME
ОглавлениеAstronomer Royal's Time. I have sometimes thought it would be very entertaining to hear a discussion between the Astronomer Royal and, let us say, Prof. Bergson on the nature of time. Prof. Bergson's authority on the subject is well known; and I may remind you that the Astronomer Royal is entrusted with the duty of finding out time for our everyday use, so presumably he has some idea of what he has to find. I must date the discussion some twenty years back, before the spread of Einstein's ideas brought about a rapprochement. There would then probably have been a keen disagreement, and I rather think that the philosopher would have had the best of the verbal argument. After showing that the Astronomer Royal's idea of time was quite nonsensical, Prof. Bergson would probably end the discussion by looking at his watch and rushing off to catch a train which was starting by the Astronomer Royal's time.
Whatever may be time de jure, the Astronomer Royal's time is time de facto. His time permeates every corner of physics. It stands in no need of logical defence; it is in the much stronger position of a vested interest. It has been woven into the structure of the classical physical scheme. "Time" in physics means Astronomer Royal's time. You may be aware that it is revealed to us in Einstein's theory that time and space are mixed up in a rather strange way. This is a great stumbling-block to the beginner. He is inclined to say, "That is impossible. I feel it in my bones that time and space must be of entirely different nature. They cannot possibly be mixed up." The Astronomer Royal complacently retorts, "It is not impossible. I have mixed them up." Well, that settles it. If the Astronomer Royal has mixed them, then his mixture will be the groundwork of present-day physics.
We have to distinguish two questions which are not necessarily identical. First, what is the true nature of time? Second, what is the nature of that quantity which has under the name of time become a fundamental part of the structure of classical physics? By long history of experiment and theory the results of physical investigation have been woven into a scheme which has on the whole proved wonderfully successful. Time—the Astronomer Royal's time—has its importance from the fact that it is a constituent of that scheme, the binding material or mortar of it. That importance is not lessened if it should prove to be only imperfectly representative of the time familiar to our consciousness. We therefore give priority to the second question.
But I may add that Einstein's theory, having cleared up the second question, having found that physical time is incongruously mixed with space, is able to pass on to the first question. There is a quantity, unrecognised in pre-relativity physics, which more directly represents the time known to consciousness. This is called proper-time or interval. It is definitely separate from and unlike proper-space. Your protest in the name of commonsense against a mixing of time and space is a feeling which I desire to encourage. Time and space ought to be separated. The current representation of the enduring world as a three-dimensional space leaping from instant to instant through time is an unsuccessful attempt to separate them. Come back with me into the virginal four-dimensional world and we will carve it anew on a plan which keeps them entirely distinct. We can then resurrect the almost forgotten time of consciousness and find that it has a gratifying importance in the absolute scheme of Nature.
But first let us try to understand why physical time has come to deviate from time as immediately perceived. We have jumped to certain conclusions about time and have come to regard them almost as axiomatic, although they are not really justified by anything in our immediate perception of time. Here is one of them.
If two people meet twice they must have lived the same time between the two meetings, even if one of them has travelled to a distant part of the universe and back in the interim.
An absurdly impossible experiment, you will say. Quite so; it is outside all experience. Therefore, may I suggest that you are not appealing to your experience of time when you object to a theory which denies the above statement? And yet if the question is pressed most people would answer impatiently that of course the statement is true. They have formed a notion of time rolling on outside us in a way which makes this seem inevitable. They do not ask themselves whether this conclusion is warranted by anything in their actual experience of time.
Although we cannot try the experiment of sending a man to another part of the universe, we have enough scientific knowledge to compute the rates of atomic and other physical processes in a body at rest and a body travelling rapidly. We can say definitely that the bodily processes in the traveller occur more slowly than the corresponding processes in the man at rest (i.e. more slowly according to the Astronomer Royal's time). This is not particularly mysterious; it is well known both from theory and experiment that the mass or inertia of matter increases when the velocity increases. The retardation is a natural consequence of the greater inertia. Thus so far as bodily processes are concerned the fast-moving traveller lives more slowly. His cycle of digestion and fatigue; the rate of muscular response to stimulus; the development of his body from youth to age; the material processes in his brain which must more or less keep step with the passage of thoughts and emotions; the watch which ticks in his waistcoat pocket; all these must be slowed down in the same ratio. If the speed of travel is very great we may find that, whilst the stay-at-home individual has aged 70 years, the traveller has aged 1 year. He has only found appetite for 365 breakfasts, lunches, etc.; his intellect, clogged by a slow-moving brain, has only traversed the amount of thought appropriate to one year of terrestrial life. His watch, which gives a more accurate and scientific reckoning, confirms this. Judging by the time which consciousness attempts to measure after its own rough fashion—and, I repeat, this is the only reckoning of time which we have a right to expect to be distinct from space—the two men have not lived the same time between the two meetings.
Reference to time as estimated by consciousness is complicated by the fact that the reckoning is very erratic. "I'll tell you who Time ambles withal, who Time trots withal, who Time gallops withal, and who he stands still withal." I have not been referring to these subjective variations. I do not very willingly drag in so unsatisfactory a time-keeper; only I have to deal with the critic who tells me what "he feels in his bones" about time, and I would point out to him that the basis of that feeling is time lived, which we have just seen may be 70 years for one individual and 1 year for another between their two meetings. We can reckon "time lived" quite scientifically, e.g. by a watch travelling with the individual concerned and sharing his changes of inertia with velocity. But there are obvious drawbacks to the general adoption of "time lived". It might be useful for each individual to have a private time exactly proportioned to his time lived; but it would be extremely inconvenient for making appointments. Therefore the Astronomer Royal has adopted a universal time-reckoning which does not follow at all strictly the time lived. According to it the time-lapse does not depend on how the object under consideration has moved in the meanwhile. I admit that this reckoning is a little hard on our returned traveller, who will be counted by it as an octogenarian although he is to all appearances still a boy in his teens. But sacrifices must be made for the general benefit. In practice we have not to deal with human beings travelling at any great speed; but we have to deal with atoms and electrons travelling at terrific speed, so that the question of private time-reckoning versus general time-reckoning is a very practical one.
Thus in physical time (or Astronomer Royal's time) two people are deemed to have lived the same time between two meetings, whether or not that accords with their actual experience. The consequent deviation from the time of experience is responsible for the mixing up of time and space, which, of course, would be impossible if the time of direct experience had been rigidly adhered to. Physical time is, like space, a kind of frame in which we locate the events of the external world. We are now going to consider how in practice external events are located in a frame of space and time. We have seen that there is an infinite choice of alternative frames; so, to be quite explicit, I will tell you how I locate events in my frame.
Location of Events. In Fig. 1 you see a collection of events, indicated by circles. They are not at present in their right places; that is the job before me—to put them into proper location in my frame of space and time. Among them I can immediately recognise and label the event Here-Now, viz. that which is happening in this room at this moment. The other events are at varying degrees of remoteness from Here-Now, and it is obvious to me that the remoteness is not only of different degrees but of different kinds. Some events spread away towards what in a general way I call the Past; I can contemplate others which are distant in the Future; others are remote in another kind of way towards China or Peru, or in general terms Elsewhere. In this picture I have only room for one dimension of Elsewhere; another dimension sticks out at right angles to the paper; and you must imagine the third dimension as best you can.
Now we must pass from this vague scheme of location to a precise scheme. The first and most important thing is to put Myself into the picture. It sounds egotistical; but, you see, it is my frame of space that will be used, so it all hangs round me. Here I am—a kind of four-dimensional worm (Fig. 2). It is a correct portrait; I have considerable extension towards the Past and presumably towards the Future, and only a moderate extension towards Elsewhere. The "instantaneous me", i.e. myself at this instant, coincides with the event Here-Now. Surveying the world from Here-Now, I can see many other events happening now. That puts it into my head that the instant of which I am conscious here must be extended to include them; and I jump to the conclusion that Now is not confined to Here-Now. I therefore draw the instant Now, running as a clean section across the world of events, in order to accommodate all the distant events which are happening now. I select the events which I see happening now and place them on this section, which I call a moment of time or an "instantaneous state of the world". I locate them on Now because they seem to be Now.
This method of location lasted until the year 1667, when it was found impossible to make it work consistently. It was then discovered by the astronomer Roemer that what is seen now cannot be placed on the instant Now. (In ordinary parlance—light takes time to travel.) That was really a blow to the whole system of world-wide instants, which were specially invented to accommodate these events. We had been mixing up two distinct events; there was the original event somewhere out in the external world and there was a second event, viz. the seeing by us of the first event. The second event was in our bodies Here-Now; the first event was neither Here nor Now. The experience accordingly gives no indication of a Now which is not Here; and we might well have abandoned the idea that we have intuitive recognition of a Now other than Here-Now, which was the original reason for postulating world-wide instants Now.
However, having become accustomed to world-wide instants, physicists were not ready to abandon them. And, indeed, they have considerable usefulness provided that we do not take them too seriously. They were left in as a feature of the picture, and two Seen-Now lines were drawn, sloping backwards from the Now line, on which events seen now could be consistently placed. The cotangent of the angle between the Seen-Now lines and the Now line was interpreted as the velocity of light.
Accordingly when I see an event in a distant part of the universe, e.g. the outbreak of a new star, I locate it (quite properly) on the Seen-Now line. Then I make a certain calculation from the measured parallax of the star and draw my Now line to pass, say, 300 years in front of the event, and my Now line of 300 years ago to pass through the event. By this method I trace the course of my Now lines or world-wide instants among the events, and obtain a frame of time-location for external events. The auxiliary Seen-Now lines, having served their purpose, are rubbed out of the picture.
That is how I locate events; how about you? We must first put You into the picture (Fig. 3). We shall suppose that you are on another star moving with different velocity but passing close to the earth at the present moment. You and I were far apart in the past and will be again in the future, but we are both Here-Now. That is duly shown in the picture. We survey the world from Here-Now, and of course we both see the same events simultaneously. We may receive rather different impressions of them; our different motions will cause different Doppler effects, FitzGerald contractions, etc. There may be slight misunderstandings until we realise that what you describe as a red square is what I would describe as a green oblong, and so on. But, allowing for this kind of difference of description, it will soon become clear that we are looking at the same events, and we shall agree entirely as to how the Seen-Now lines lie with respect to the events. Starting from our common Seen-Now lines, you have next to make the calculations for drawing your Now line among the events, and you trace it as shown in Fig. 3.
How is it that, starting from the same Seen-Now lines, you do not reproduce my Now line? It is because a certain measured quantity, viz. the velocity of light, has to be employed in the calculations; and naturally you trust to your measures of it as I trust to mine. Since our instruments are affected by different FitzGerald contractions, etc., there is plenty of room for divergence. Most surprisingly we both find the same velocity of light, 299,796 kilometres per second. But this apparent agreement is really a disagreement; because you take this to be the velocity relative to your planet and I take it to be the velocity relative to mine.[B] Therefore our calculations are not in accord, and your Now line differs from mine.
If we believe our world-wide instants or Now lines to be something inherent in the world outside us, we shall quarrel frightfully. To my mind it is ridiculous that you should take events on the right of the picture which have not happened yet and events on the left which are already past and call the combination an instantaneous condition of the universe. You are equally scornful of my grouping. We can never agree. Certainly it looks from the picture as though my instants were more natural than yours; but that is because I drew the picture. You, of course, would redraw it with your Now lines at right angles to yourself.
But we need not quarrel if the Now lines are merely reference lines drawn across the world for convenience in locating events—like the lines of latitude and longitude on the earth. There is then no question of a right way and a wrong way of drawing the lines; we draw them as best suits our convenience. World-wide instants are not natural cleavage planes of time; there is nothing equivalent to them in the absolute structure of the world; they are imaginary partitions which we find it convenient to adopt.
We have been accustomed to regard the world—the enduring world—as stratified into a succession of instantaneous states. But an observer on another star would make the strata run in a different direction from ours. We shall see more clearly the real mechanism of the physical world if we can rid our minds of this illusion of stratification. The world that then stands revealed, though strangely unfamiliar, is actually much simpler. There is a difference between simplicity and familiarity. A pig may be most familiar to us in the form of rashers, but the unstratified pig is a simpler object to the biologist who wishes to understand how the animal functions.
Absolute Past and Future. Let us now try to attain this absolute view. We rub out all the Now lines. We rub out Yourself and Myself, since we are no longer essential to the world. But the Seen-Now lines are left. They are absolute, since all observers from Here-Now agree about them. The flat picture is a section; you must imagine it rotated (twice rotated in fact, since there are two more dimensions outside the picture). The Seen-Now locus is thus really a cone; or by taking account of the prolongation of the lines into the future a double cone or hour-glass figure (Fig. 4). These hour-glasses (drawn through each point of the world considered in turn as a Here-Now) embody what we know of the absolute structure of the world so far as space and time are concerned. They show how the "grain" of the world runs.
Father Time has been pictured as an old man with a scythe and an hour-glass. We no longer permit him to mow instants through the world with his scythe; but we leave him his hour-glass.
Since the hour-glass is absolute its two cones provide respectively an Absolute Future and an Absolute Past for the event Here-Now. They are separated by a wedge-shaped neutral zone which (absolutely) is neither past nor future. The common impression that relativity turns past and future altogether topsy-turvy is quite false. But, unlike the relative past and future, the absolute past and future are not separated by an infinitely narrow present. It suggests itself that the neutral wedge might be called the Absolute Present; but I do not think that is a good nomenclature. It is much better described as Absolute Elsewhere. We have abolished the Now lines, and in the absolute world the present (Now) is restricted to Here-Now.
Perhaps I may illustrate the peculiar conditions arising from the wedge-shaped neutral zone by a rather hypothetical example. Suppose that you are in love with a lady on Neptune and that she returns the sentiment. It will be some consolation for the melancholy separation if you can say to yourself at some—possibly prearranged—moment, "She is thinking of me now". Unfortunately a difficulty has arisen because we have had to abolish Now. There is no absolute Now, but only the various relative Nows differing according to the reckoning of different observers and covering the whole neutral wedge which at the distance of Neptune is about eight hours thick. She will have to think of you continuously for eight hours on end in order to circumvent the ambiguity of "Now".
At the greatest possible separation on the earth the thickness of the neutral wedge is no more than a tenth of a second; so that terrestrial synchronism is not seriously interfered with. This suggests a qualification of our previous conclusion that the absolute present is confined to Here-Now. It is true as regards instantaneous events (point-events). But in practice the events we notice are of more than infinitesimal duration. If the duration is sufficient to cover the width of the neutral zone, then the event taken as a whole may fairly be considered to be Now absolutely. From this point of view the "nowness" of an event is like a shadow cast by it into space, and the longer the event the farther will the umbra of the shadow extend.
As the speed of matter approaches the speed of light its mass increases to infinity, and therefore it is impossible to make matter travel faster than light. This conclusion is deduced from the classical laws of physics, and the increase of mass has been verified by experiment up to very high velocities. In the absolute world this means that a particle of matter can only proceed from Here-Now into the absolute future—which, you will agree, is a reasonable and proper restriction. It cannot travel into the neutral zone; the limiting cone is the track of light or of anything moving with the speed of light. We ourselves are attached to material bodies, and therefore we can only go on into the absolute future.
Events in the absolute future are not absolutely Elsewhere. It would be possible for an observer to travel from Here-Now to the event in question in time to experience it, since the required velocity is less than that of light; relative to the frame of such an observer the event would be Here. No observer can reach an event in the neutral zone, since the required speed is too great. The event is not Here for any observer (from Here-Now); therefore it is absolutely Elsewhere.
The Absolute Distinction of Space and Time. By dividing the world into Absolute Past and Future on the one hand and Absolute Elsewhere on the other hand, our hour-glasses have restored a fundamental differentiation between time and space. It is not a distinction between time and space as they appear in a space-time frame, but a distinction between temporal and spatial relations. Events can stand to us in a temporal relation (absolutely past or future) or a spatial relation (absolutely elsewhere), but not in both. The temporal relations radiate into the past and future cones and the spatial relations into the neutral wedge; they are kept absolutely separated by the Seen-Now lines which we have identified with the grain of absolute structure in the world. We have recovered the distinction which the Astronomer Royal confused when he associated time with the merely artificial Now lines.
I would direct your attention to an important difference in our apprehension of time-extension and space-extension. As already explained our course through the world is into the absolute future, i.e. along a sequence of time-relations. We can never have a similar experience of a sequence of space-relations because that would involve travelling with velocity greater than light. Thus we have immediate experience of the time-relation but not of the space-relation. Our knowledge of space-relations is indirect, like nearly all our knowledge of the external world—a matter of inference and interpretation of the impressions which reach us through our sense-organs. We have similar indirect knowledge of the time-relations existing between the events in the world outside us; but in addition we have direct experience of the time-relations that we ourselves are traversing—a knowledge of time not coming through external sense-organs, but taking a short cut into our consciousness. When I close my eyes and retreat into my inner mind, I feel myself enduring, I do not feel myself extensive. It is this feeling of time as affecting ourselves and not merely as existing in the relations of external events which is so peculiarly characteristic of it; space on the other hand is always appreciated as something external.
That is why time seems to us so much more mysterious than space. We know nothing about the intrinsic nature of space, and so it is quite easy to conceive it satisfactorily. We have intimate acquaintance with the nature of time and so it baffles our comprehension. It is the same paradox which makes us believe we understand the nature of an ordinary table whereas the nature of human personality is altogether mysterious. We never have that intimate contact with space and tables which would make us realise how mysterious they are; we have direct knowledge of time and of the human spirit which makes us reject as inadequate that merely symbolic conception of the world which is so often mistaken for an insight into its nature.
The Four-Dimensional World. I do not know whether you have been keenly alive to the fact that for some time now we have been immersed in a four-dimensional world. The fourth dimension required no introduction; as soon as we began to consider events it was there. Events obviously have a fourfold order which we can dissect into right or left, behind or in front, above or below, sooner or later—or into many alternative sets of fourfold specification. The fourth dimension is not a difficult conception. It is not difficult to conceive of events as ordered in four dimensions; it is impossible to conceive them otherwise. The trouble begins when we continue farther along this line of thought, because by long custom we have divided the world of events into three-dimensional sections or instants, and regarded the piling of the instants as something distinct from a dimension. That gives us the usual conception of a three-dimensional world floating in the stream of time. This pampering of a particular dimension is not entirely without foundation; it is our crude appreciation of the absolute separation of space-relations and time-relations by the hour-glass figures. But the crude discrimination has to be replaced by a more accurate discrimination. The supposed planes of structure represented by Now lines separated one dimension from the other three; but the cones of structure given by the hour-glass figures keep the four dimensions firmly pinned together.[C]
We are accustomed to think of a man apart from his duration. When I portrayed "Myself" in Fig. 2, you were for the moment surprised that I should include my boyhood and old age. But to think of a man without his duration is just as abstract as to think of a man without his inside. Abstractions are useful, and a man without his inside (that is to say, a surface) is a well-known geometrical conception. But we ought to realise what is an abstraction and what is not. The "four-dimensional worms" introduced in this chapter seem to many people terribly abstract. Not at all; they are unfamiliar conceptions but not abstract conceptions. It is the section of the worm (the man Now) which is an abstraction. And as sections may be taken in somewhat different directions, the abstraction is made differently by different observers who accordingly attribute different FitzGerald contractions to it. The non-abstract man enduring through time is the common source from which the different abstractions are made.
The appearance of a four-dimensional world in this subject is due to Minkowski. Einstein showed the relativity of the familiar quantities of physics; Minkowski showed how to recover the absolute by going back to their four-dimensional origin and searching more deeply.
The Velocity of Light. A feature of the relativity theory which seems to have aroused special interest among philosophers is the absoluteness of the velocity of light. In general velocity is relative. If I speak of a velocity of 40 kilometres a second I must add "relative to the earth", "relative to Arcturus", or whatever reference body I have in mind. No one will understand anything from my statement unless this is added or implied. But it is a curious fact that if I speak of a velocity of 299,796 kilometres a second it is unnecessary to add the explanatory phrase. Relative to what? Relative to any and every star or particle of matter in the universe.
It is no use trying to overtake a flash of light; however fast you go it is always travelling away from you at 186,000 miles a second. Now from one point of view this is a rather unworthy deception that Nature has practised upon us. Let us take our favourite observer who travels at 161,000 miles a second and send him in pursuit of the flash of light. It is going 25,000 miles a second faster than he is; but that is not what he will report. Owing to the contraction of his standard scale his miles are only half-miles; owing to the slowing down of his clocks his seconds are double-seconds. His measurements would therefore make the speed 100,000 miles a second (really half-miles per double-second). He makes a further mistake in synchronising the clocks with which he records the velocity. (You will remember that he uses a different Now line from ours.) This brings the speed up to 186,000 miles a second. From his own point of view the traveller is lagging hopelessly behind the light; he does not realise what a close race he is making of it, because his measuring appliances have been upset. You will note that the evasiveness of the light-flash is not in the least analogous to the evasiveness of the rainbow.
But although this explanation may help to reconcile us to what at first seems a blank impossibility, it is not really the most penetrating. You will remember that a Seen-Now line, or track of a flash of light, represents the grain of the world-structure. Thus the peculiarity of a velocity of 299,796 kilometres a second is that it coincides with the grain of the world. The four-dimensional worms representing material bodies must necessarily run across the grain into the future cone, and we have to introduce some kind of reference frame to describe their course. But the flash of light is exactly along the grain, and there is no need of any artificial system of partitions to describe this fact.
The number 299,796 (kilometres a second) is, so to speak, a code-number for the grain of the wood. Other code-numbers correspond to the various worm-holes which may casually cross the grain. We have different codes corresponding to different frames of space and time; the code-number of the grain of the wood is the only one which is the same in all codes. This is no accident; but I do not know that any deep inference is to be drawn from it, other than that our measure-codes have been planned rationally so as to turn on the essential and not on the casual features of world-structure.
The speed of 299,796 kilometres a second which occupies a unique position in every measure-system is commonly referred to as the speed of light. But it is much more than that; it is the speed at which the mass of matter becomes infinite, lengths contract to zero, clocks stand still. Therefore it crops up in all kinds of problems whether light is concerned or not.
The scientist's interest in the absoluteness of this velocity is very great; the philosopher's interest has been, I think, largely a mistaken interest. In asserting its absoluteness scientists mean that they have assigned the same number to it in every measure-system; but that is a private arrangement of their own—an unwitting compliment to its universal importance.[D] Turning from the measure-numbers to the thing described by them, the "grain" is certainly an absolute feature of the wood, but so also are the "worm-holes" (material particles). The difference is that the grain is essential and universal, the worm-holes casual. Science and philosophy have often been at cross-purposes in discussing the Absolute—a misunderstanding which is I am afraid chiefly the fault of the scientists. In science we are chiefly concerned with the absoluteness or relativity of the descriptive terms we employ; but when the term absolute is used with reference to that which is being described it has generally the loose meaning of "universal" as opposed to "casual".
Another point on which there has sometimes been a misunderstanding is the existence of a superior limit to velocity. It is not permissible to say that no velocity can exceed 299,796 kilometres a second. For example, imagine a search-light capable of sending an accurately parallel beam as far as Neptune. If the search-light is made to revolve once a minute, Neptune's end of the beam will move round a circle with velocity far greater than the above limit. This is an example of our habit of creating velocities by a mental association of states which are not themselves in direct causal connection. The assertion made by the relativity theory is more restricted, viz.—
Neither matter, nor energy, nor anything capable of being used as a signal can travel faster than 299,796 kilometres a second, provided that the velocity is referred to one of the frames of space and time considered in this chapter.[E]
The velocity of light in matter can under certain circumstances (in the phenomenon of anomalous dispersion) exceed this value. But the higher velocity is only attained after the light has been passing through the matter for some moments so as to set the molecules in sympathetic vibration. An unheralded light-flash travels more slowly. The speed, exceeding 299,796 kilometres a second, is, so to speak, achieved by prearrangement, and has no application in signalling.
We are bound to insist on this limitation of the speed of signalling. It has the effect that it is only possible to signal into the Absolute Future. The consequences of being able to transmit messages concerning events Here-Now into the neutral wedge are too bizarre to contemplate. Either the part of the neutral wedge that can be reached by the signals must be restricted in a way which violates the principle of relativity; or it will be possible to arrange for a confederate to receive the messages which we shall send him to-morrow, and to retransmit them to us so that we receive them to-day! The limit to the velocity of signals is our bulwark against that topsy-turvydom of past and future, of which Einstein's theory is sometimes wrongfully accused.
Expressed in the conventional way this limitation of the speed of signalling to 299,796 kilometres a second seems a rather arbitrary decree of Nature. We almost feel it as a challenge to find something that goes faster. But if we state it in the absolute form that signalling is only possible along a track of temporal relation and not along a track of spatial relation the restriction seems rational. To violate it we have not merely to find something which goes just 1 kilometre per second better, but something which overleaps that distinction of time and space—which, we are all convinced, ought to be maintained in any sensible theory.
Practical Applications. In these lectures I am concerned more with the ideas of the new theories than with their practical importance for the advancement of science. But the drawback of dwelling solely on the underlying conceptions is that it is likely to give the impression that the new physics is very much "up in the air". That is by no means true, and the relativity theory is used in a businesslike way in the practical problems to which it applies. I can only consider here quite elementary problems which scarcely do justice to the power of the new theory in advanced scientific research. Two examples must suffice.
1. It has often been suggested that the stars will be retarded by the back-pressure of their own radiation. The idea is that since the star is moving forwards the emitted radiation is rather heaped up in front of it and thinned out behind. Since radiation exerts pressure the pressure will be stronger on the front surface than on the rear. Therefore there is a force retarding the star, tending to bring it gradually to rest. The effect might be of great importance in the study of stellar motions; it would mean that on the average old stars must have lower speeds than young stars—a conclusion which, as it happens, is contrary to observation.
But according to the theory of relativity "coming to rest" has no meaning. A decrease of velocity relative to one frame is an increase relative to another frame. There is no absolute velocity and no absolute rest for the star to come to. The suggestion may therefore be at once dismissed as fallacious.
2. The β particles shot out by radioactive substances are electrons travelling at speeds not much below the speed of light. Experiment shows that the mass of one of these high-speed electrons is considerably greater than the mass of an electron at rest. The theory of relativity predicts this increase and provides the formula for the dependence of mass on velocity. The increase arises solely from the fact that mass is a relative quantity depending by definition on the relative quantities length and time.
Let us look at a β particle from its own point of view. It is an ordinary electron in no wise different from any other. But is it travelling with unusually high speed? "No", says the electron, "That is your point of view. I contemplate with amazement your extraordinary speed of 100,000 miles a second with which you are shooting past me. I wonder what it feels like to move so quickly. However, it is no business of mine." So the β particle, smugly thinking itself at rest, pays no attention to our goings on, and arranges itself with the usual mass, radius and charge. It has just the standard mass of an electron, 9.10-28 grams. But mass and radius are relative quantities, and in this case the frame to which they are referred is evidently the frame appropriate to an electron engaged in self-contemplation, viz. the frame in which it is at rest. But when we talk about mass we refer it to the frame in which we are at rest. By the geometry of the four-dimensional world we can calculate the formulae for the change of reckoning of mass in two different frames, which is consequential on the change of reckoning of length and time; we find in fact that the mass is increased in the same ratio as the length is diminished (FitzGerald factor). The increase of mass that we observe arises from the change of reckoning between the electron's own frame and our frame.
All electrons are alike from their own point of view. The apparent differences arise in fitting them into our own frame of reference which is irrelevant to their structure. Our reckoning of their mass is higher than their own reckoning, and increases with the difference between our respective frames, i.e. with the relative velocity between us.
We do not bring forward these results to demonstrate or confirm the truth of the theory, but to show the use of the theory. They can both be deduced from the classical electromagnetic theory of Maxwell coupled (in the second problem) with certain plausible assumptions as to the conditions holding at the surface of an electron. But to realise the advantage of the new theory we must consider not what could have been but what was deduced from the classical theory. The historical fact is that the conclusions of the classical theory as to the first problem were wrong; an important compensating factor escaped notice. Its conclusions as to the second problem were (after some false starts) entirely correct numerically. But since the result was deduced from the electromagnetic equations of the electron it was thought that it depended on the fact that an electron is an electrical structure; and the agreement with observation was believed to confirm the hypothesis that an electron is pure electricity and nothing else. Our treatment above makes no reference to any electrical properties of the electron, the phenomenon having been found to arise solely from the relativity of mass. Hence, although there may be other good reasons for believing that an electron consists solely of negative electricity, the increase of mass with velocity is no evidence one way or the other.
In this chapter the idea of a multiplicity of frames of space has been extended to a multiplicity of frames of space and time. The system of location in space, called a frame of space, is only a part of a fuller system of location of events in space and time. Nature provides no indication that one of these frames is to be preferred to the others. The particular frame in which we are relatively at rest has a symmetry with respect to us which other frames do not possess, and for this reason we have drifted into the common assumption that it is the only reasonable and proper frame; but this egocentric outlook should now be abandoned, and all frames treated as on the same footing. By considering time and space together we have been able to understand how the multiplicity of frames arises. They correspond to different directions of section of the four-dimensional world of events, the sections being the "world-wide instants". Simultaneity (Now) is seen to be relative. The denial of absolute simultaneity is intimately connected with the denial of absolute velocity; knowledge of absolute velocity would enable us to assert that certain events in the past or future occur Here but not Now; knowledge of absolute simultaneity would tell us that certain events occur Now but not Here. Removing these artificial sections, we have had a glimpse of the absolute world-structure with its grain diverging and interlacing after the plan of the hour-glass figures. By reference to this structure we discern an absolute distinction between space-like and time-like separation of events—a distinction which justifies and explains our instinctive feeling that space and time are fundamentally different. Many of the important applications of the new conceptions to the practical problems of physics are too technical to be considered in this book; one of the simpler applications is to determine the changes of the physical properties of objects due to rapid motion. Since the motion can equally well be described as a motion of ourselves relative to the object or of the object relative to ourselves, it cannot influence the absolute behaviour of the object. The apparent changes in the length, mass, electric and magnetic fields, period of vibration, etc., are merely a change of reckoning introduced in passing from the frame in which the object is at rest to the frame in which the observer is at rest. Formulae for calculating the change of reckoning of any of these quantities are easily deduced now that the geometrical relation of the frames has been ascertained.