Читать книгу Lectures on Quantum Field Theory - Ashok Das - Страница 8

Оглавление

Contents

Preface

1Relativistic equations

1.1Introduction

1.2Notations

1.3Klein-Gordon equation

1.3.1Klein paradox

1.4Dirac equation

1.5References

2Solutions of the Dirac equation

2.1Plane wave solutions

2.2Normalization of the wave function

2.3Spin of the Dirac particle

2.4Continuity equation

2.5Dirac’s hole theory

2.6Properties of the Dirac matrices

2.6.1Fierz rearrangement

2.7References

3Properties of the Dirac equation

3.1Lorentz transformations

3.2Covariance of the Dirac equation

3.3Transformation of bilinears

3.4Projection operators, completeness relation

3.5Helicity

3.6Massless Dirac particle

3.7Chirality

3.8Non-relativistic limit of the Dirac equation

3.9Electron in an external magnetic field

3.10Foldy-Wouthuysen transformation

3.11Zitterbewegung

3.12References

4Representations of Lorentz and Poincaré groups

4.1Symmetry algebras

4.1.1Rotation

4.1.2Translation

4.1.3Lorentz transformation

4.1.4Poincaré transformation

4.2Representations of the Lorentz group

4.2.1Similarity transformations and representations

4.3Unitary representations of the Poincaré group

4.3.1Massive representation

4.3.2Massless representation

4.4References

5Free Klein-Gordon field theory

5.1Introduction

5.2Lagrangian density

5.3Quantization

5.4Field decomposition

5.5Creation and annihilation operators

5.6Energy eigenstates

5.7Physical meaning of energy eigenstates

5.8Green’s functions

5.9Covariant commutation relations

5.10References

6Self-interacting scalar field theory

6.1Nöther’s theorem

6.1.1Space-time translation

6.2Self-interacting ϕ4 theory

6.3Interaction picture and time evolution operator

6.4S-matrix

6.5Normal ordered product and Wick’s theorem

6.6Time ordered products and Wick’s theorem

6.7Spectral representation and dispersion relation

6.8References

7Complex scalar field theory

7.1Quantization

7.2Field decomposition

7.3Charge operator

7.4Green’s functions

7.5Spontaneous symmetry breaking and the Goldstone theorem

7.6Electromagnetic coupling

7.7References

8Dirac field theory

8.1Pauli exclusion principle

8.2Quantization of the Dirac field

8.3Field decomposition

8.4Charge operator

8.5Green’s functions

8.6Covariant anti-commutation relations

8.7Normal ordered and time ordered products

8.8Massless Dirac fields

8.9Yukawa interaction

8.10Feynman diagrams

8.11References

9Maxwell field theory

9.1Maxwell’s equations

9.2Canonical quantization

9.3Field decomposition

9.4Photon propagator

9.5Quantum electrodynamics

9.6Physical processes

9.7Ward-Takahashi identity in QED

9.8Covariant quantization of the Maxwell theory

9.9References

10Dirac method for constrained systems

10.1Constrained systems

10.2Dirac method and Dirac bracket

10.3Particle moving on a sphere

10.4Relativistic free particle

10.5Dirac field theory

10.6Maxwell field theory

10.7References

11Discrete symmetries

11.1Parity

11.1.1Parity in quantum mechanics

11.1.2Spin zero field

11.1.3Photon field

11.1.4Dirac field

11.2Charge conjugation

11.2.1Spin zero field

11.2.2Dirac field

11.2.3Majorana fermions

11.2.4Eigenstates of charge conjugation

11.3Time reversal

11.3.1Spin zero field and Maxwell’s theory

11.3.2Dirac fields

11.3.3 Consequences of T invariance

11.3.4Electric dipole moment of neutron

11.4CPT theorem

11.4.1Equality of mass for particles and antiparticles

11.4.2Electric charge for particles and antiparticles

11.4.3Equality of lifetimes for particles and antiparticles

11.5References

12Yang-Mills theory

12.1Non-Abelian gauge theories

12.2Canonical quantization of Yang-Mills theory

12.3Path integral quantization of gauge theories

12.4Path integral quantization of tensor fields

12.5References

13BRST invariance and its consequences

13.1BRST symmetry

13.2Covariant quantization of Yang-Mills theory

13.3Unitarity

13.4Slavnov-Taylor identity

13.5Feynman rules

13.6Ghost free gauges

13.7References

14Higgs phenomenon and the standard model

14.1Stückelberg formalism

14.2Higgs phenomenon

14.3The standard model

14.3.1Field content

14.3.2Lagrangian density

14.3.3Spontaneous symmetry breaking

14.4References

15Regularization of Feynman diagrams

15.1Introduction

15.2Loop expansion

15.3Cut-off regularization

15.3.1Calculation in the Yukawa theory

15.4Pauli-Villars regularization

15.5Dimensional regularization

15.5.1Calculations in QED

15.6References

16Renormalization theory

16.1Superficial degree of divergence

16.2A brief history of renormalization

16.3Schwinger-Dyson equation

16.4BPHZ renormalization

16.5Renormalization of gauge theories

16.6Anomalous Ward identity

16.7References

17Renormalization group and equation

17.1Gell-Mann-Low equation

17.2Renormalization group

17.3Renormalization group equation

17.4Solving the renormalization group equation

17.5Callan-Symanzik equation

17.6References

18Nielsen identities and gauge independence of physical parameters

18.1The problem

18.2Questions associated with the effective potential

18.3Gauge independence of the fermion mass

18.3.1Fermion mass

18.3.2Pole of the fermion Green’s function

18.3.3Interpolating gauge

18.3.4Nielsen identity for QED

18.3.5Gauge dependence of the pole of the propagator

18.3.6Infrared divergence and gauge dependence of fermion mass

18.4References

19Basics of global supersymmetry

19.1Graded Lie algebras

19.1.1Representations

19.2Supersymmetric quantum mechanics

19.3Supersymmetric field theories

19.3.1Wess-Zumino theory

19.3.2Vector multiplet

19.3.3Supersymmetric Higgs model

19.4Superspace

19.5References

Appendices

Appendix: More on fermions

A1Fermions in 4 dimensions

A2Spinors in D space-time dimensions

A3References

Appendix: Gauge invariant potential and the Fock-Schwinger gauge

B1Gauge invariant potential

B2Fock-Schwinger gauge

B3References

Index

Lectures on Quantum Field Theory

Подняться наверх