Читать книгу Стратегические игры. Доступный учебник по теории игр - Авинаш Диксит - Страница 12

Часть I. Общие принципы
Глава 2. Подход к анализу стратегических игр
3. Некоторые термины и исходные предположения

Оглавление

В процессе анализа стратегической игры было бы логично начать с определения ее структуры, включающей доступные для всех игроков стратегии, информацию и цели. Первые два аспекта в каждой игре имеют свою специфику и отличаются друг от друга параметрами, рассмотренными в предыдущем разделе, поэтому игрок должен определить позицию своей игры в этой системе. В связи с целями возникает ряд новых и интересных понятий. Ниже мы проанализируем различные аспекты этих вопросов.

А. Стратегии

Стратегии – это не что иное, как имеющиеся в распоряжении игроков варианты выбора, однако даже эта базовая концепция требует дальнейшего изучения и уточнения. Если игра состоит исключительно из одновременных разовых ходов, то стратегия каждого игрока сводится к однократному выполнению соответствующего действия. Однако если игра состоит из последовательных ходов, то игрок, делающий ход на более позднем этапе, может отреагировать на действия других игроков (или собственные действия), предпринятые на предыдущих этапах. Следовательно, каждый игрок должен составить исчерпывающий план подобных действий: «Если другой игрок предпримет действие А, то я выполню Х, но если он сделает Б, я выберу Y». Исчерпывающий план действий представляет собой стратегию такой игры.

Для того чтобы понять, можно ли считать вашу стратегию исчерпывающей, достаточно ответить на один простой вопрос: содержит ли она настолько четкие указания в отношении ведения игры (с описанием ваших действий в любых непредвиденных обстоятельствах), что если вы запишете их на бумаге, отдадите другому человеку и уедете в отпуск, то этот человек, действуя в качестве вашего представителя, сможет вести игру точно так же, как это сделали бы вы сами? Этот человек будет знать, как поступать в каждой ситуации, возникающей в ходе игры, и у него отпадет необходимость беспокоить вас во время отпуска.

Мы рассмотрим этот простой тест более подробно в главе 3, где раскроем его суть и применим в некоторых конкретных ситуациях. А пока вам просто следует помнить, что стратегия – это исчерпывающий план действий.

Данная концепция вписывается в стандартную трактовку слова «стратегия» как долгосрочного или масштабного плана действий, в отличие от тактики, которая связана с краткосрочными или менее масштабными планами. Например, генералы армии составляют стратегические планы войны или крупного сражения, тогда как нижестоящие офицеры разрабатывают тактику для более мелких столкновений или конкретного театра военных действий с учетом местных условий. Однако в теории игр термин «тактика» вообще не применяется. Термин «стратегия» охватывает все ситуации, обозначая как исчерпывающий план предпринимаемых действий, так и единственный ход, если это все, что требуется в конкретной игре.

Кроме того, слово «стратегия» широко используется для обозначения решений человека, касающихся довольно продолжительного периода жизни и последовательности вариантов выбора, хотя здесь и нет игры в нашем понимании этого слова, то есть как целенаправленного взаимодействия с другими людьми. По всей вероятности, вы уже определились со стратегией построения карьеры. Когда вы начнете получать доход, вам понадобится разработать стратегию сбережений и инвестиций, а со временем запланировать стратегию выхода на пенсию. Такое использование термина «стратегия» совпадает с нашим пониманием стратегии как плана выполнения последовательности действий в ответ на меняющиеся обстоятельства. Единственное различие – мы обозначаем этим термином ситуацию (а именно игру), в которой обстоятельства возникают в результате действий, предпринятых другими целеустремленными игроками.

Б. Выигрыши

На вопрос, какова цель участника игры, большинство новичков в области стратегического мышления отвечают: выиграть. Однако далеко не всегда все так просто. Порой весомое значение имеет уровень победы. Например, если при разработке нового продукта ваш вариант оказывается лишь чуточку лучше, чем у конкурентов, велика вероятность того, что ваш патент могут оспорить. Иногда могут быть и более мелкие призы для нескольких участников игры, а значит, победа – это еще не все. Самое важное, что стратегических игр исключительно с нулевой суммой, или тех, в которых одна сторона выигрывает, а другая проигрывает, совсем мало. Как правило, они сочетают в себе элементы как общего интереса, так и конфликта между игроками. Анализ таких игр со смешанными мотивами требует более точных расчетов, чем простая дихотомия «выигрыш/проигрыш», например сравнения выгоды от сотрудничества с выгодой от отказа от него.

Мы предоставим в распоряжение каждого игрока полноценную числовую шкалу, с которой он сможет сравнивать все логически допустимые исходы игры, отвечающие каждой возможной комбинации вариантов выбора стратегий всеми игроками. Число, соответствующее каждому возможному исходу игры, называется выигрышем игрока для данного исхода. Более высокое значение выигрыша соотносится с результатом, который считается лучшим в системе оценок этого игрока.

Иногда выигрыш представляет собой простой численный рейтинг исходов игры, в котором самый худший исход имеет рейтинг 1, следующий – рейтинг 2 и так далее вплоть до лучшего исхода. В других играх может быть более естественная числовая шкала – например, денежный доход или прибыль компаний, доля зрителей телевизионных сетей и т. д. Зачастую величина выигрыша – всего лишь эмпирическая оценка. В таких случаях необходимо убедиться, что итоги анализа существенно не изменятся в результате изменения этих оценок в рамках допустимого предела погрешности.

В отношении выигрышей нужно четко понимать два важных момента. Во-первых, выигрыш одного игрока охватывает все аспекты исхода игры, представляющие для него интерес. В частности, игроку необязательно быть эгоистом, однако его забота о других должна быть включена в числовую шкалу выигрышей. Во-вторых, мы будем исходить из предположения, что если игрок сталкивается со случайным множеством исходов игры, то число, связанное с этим множеством, представляет собой среднее от выигрышей по каждому отдельному исходу, взвешенных по их вероятности. Таким образом, если в рейтинге одного игрока исход А имеет выигрыш 0, а исход Б – выигрыш 100, то множество исходов А с вероятностью 75 процентов и Б с вероятностью 25 процентов должно обеспечивать выигрыш 0,75 × 0 + 0,25 × 100 = 25. Этот показатель часто называют ожидаемым выигрышем от случайного множества исходов игры. Слово «ожидаемый» имеет особый подтекст на языке теории вероятностей. Под ним подразумевается не то, что вы предполагаете или ожидаете получить, а математическое (вероятностное, статистическое) ожидание, которое означает среднее от всех возможных исходов, где каждому исходу присваивается вес, пропорциональный его вероятности.

Второй момент создает потенциальные трудности. Рассмотрим игру, в которой участники получают или теряют деньги, а выигрыш измеряется в денежной сумме. Если игрок может ничего не получить с вероятностью 75 процентов и получить 100 долларов с вероятностью 25 процентов, то ожидаемый выигрыш составит 25 долларов, если его рассчитывать так, как в предыдущем примере. Допустим, что столько же игрок бы выиграл и в результате простого неслучайного исхода. Иными словами, основываясь на таком подходе к расчету выигрышей, человеку должно быть безразлично, получит он 25 долларов наверняка или пойдет на риск в случае множества возможных исходов, по которому средний выигрыш составляет 25 долларов. На первый взгляд может показаться, что большинство людей предпочтут верные 25 долларов рискованной игре, обеспечивающей средний выигрыш в том же размере.

Очень простая модификация процесса вычисления выигрышей позволяет обойти эту трудность. Мы будем их измерять не в денежном выражении, а с использованием нелинейного взвешивания денежных сумм. Речь идет о методе ожидаемой полезности, на котором мы подробнее остановимся в приложении к главе 7. А пока поверьте нам на слово: включение в концептуальную модель теории игр такого показателя, как отношение игроков к риску, – вполне выполнимая задача. В теории игр почти все основано на методе ожидаемой полезности, и он действительно полезен, хотя и не лишен недостатков. Мы будем его придерживаться в данной книге, но при этом укажем на ряд проблем, которые он оставляет нерешенными. Простой пример применения этого метода представлен в разделе 5.В главы 7.

В. Рациональность

Цель каждого участника игры – получить максимально возможный выигрыш. Но насколько успешно каждый игрок справляется с ее реализацией? Этот вопрос касается самой природы игры со стратегическим взаимодействием, а не того, как другие игроки, преследующие собственные интересы, будут препятствовать этому игроку. Получение высокого выигрыша зависит скорее от того, насколько хорошо игрок умеет подбирать стратегию, наилучшим образом соответствующую его интересам, и в какой степени придерживается ее в ходе игры.

В большинстве случаев теория игр исходит из предположения, что игроки умеют это делать. Это предположение о рациональном поведении. Обратите внимание, в каком именно значении здесь используется слово рациональный. Подразумевается наличие у каждого игрока непротиворечивой системы ранжирования (ценностей и выигрышей) по всем логически возможным исходам игры и способности вычислять стратегию, максимально отвечающую его интересам. Следовательно, рациональность имеет две основные составляющие: полное понимание собственных интересов и безукоризненный расчет действий, наилучшим образом им соответствующий.

Не менее важно понимать, что не входит в концепцию рационального поведения. Рациональность не означает, что игроки эгоистичны: игрок может высоко ценить благополучие другого игрока (игроков) и включить эту оценку в свои выигрыши. Рациональность также не означает, что игроки мыслят в краткосрочной перспективе; на самом деле анализ последствий – важный аспект стратегического мышления, а действия, которые кажутся иррациональными в ближайшей перспективе, в дальнейшем могут играть существенную стратегическую роль. Быть рациональным не значит иметь такую же систему ценностей, как другие игроки, или разумные люди, или люди с высокими этическими и моральными принципами. Быть рациональным – это просто четко придерживаться собственной системы ценностей. Поэтому, когда один игрок анализирует реакцию других игроков в игре с последовательными шагами или сменяющиеся раунды в игре с одновременными ходами, он должен признать, что другие игроки просчитывают последствия своего выбора посредством собственной системы ценностей или ранжирования. Вы не должны приписывать им свою систему ценностей или свои стандарты рациональности, а также исходить из того, что они будут действовать так, как поступили бы в данной ситуации вы. В свое время многие «эксперты», комментировавшие вооруженный конфликт в Персидском заливе в конце 1990-х, а затем в 2002–2003 годах, выдвигали предположение, что Саддам Хусейн сдастся, «поскольку он рациональный человек». Однако они не понимали, что система ценностей Хусейна отличается от системы ценностей большинства западных правительств и экспертов.

Как правило, игроки даже не знают о системах ценностей других игроков; это одна из причин того, почему в действительности многие игры относятся к категории игр с неполной или асимметричной информацией. В таких играх попытки определить ценности других игроков и скрыть или продемонстрировать собственные – важный элемент стратегии.

Теория игр исходит из предположения, что рациональность свойственна всем игрокам. Насколько оно корректно, а следовательно, насколько эффективна теория, использующая его? С одной стороны, очевидно, что это предположение не может быть истинным в буквальном смысле слова. Зачастую люди даже не знают, какой будет их система ценностей, они не думают заранее, как будут ранжировать гипотетические альтернативы, а затем запоминать их рейтинг, пока не столкнутся с проблемой выбора. Поэтому им трудно отследить все возможные последствия различных вариантов стратегического выбора, который могут сделать они и другие игроки, и загодя составить рейтинг различных исходов игры, чтобы определиться с выбором стратегии. Даже если бы они знали свои предпочтения, процесс вычислений все равно был бы далеко не прост. Большинство игр в реальной жизни очень сложны, а многие реальные игроки имеют ограниченные мыслительные и вычислительные способности. Известно, что в таких играх, как шахматы, лучшую стратегию можно вычислить посредством конечного числа шагов, но оно настолько велико, что еще никому не удавалось выполнить такие расчеты, и хорошая игра по-прежнему в значительной мере остается искусством.

Предположение о рациональности приближается к реальности тогда, когда игроки – постоянные участники игры, играющие в нее достаточно часто и извлекающие для себя пользу из ее различных исходов. Такие игроки понимают, как стратегический выбор соперников приводит к тем или иным исходам и насколько хорошо или плохо играют они сами. В этом случае мы можем рассчитывать, что их выбор, даже сделанный не посредством исчерпывающих и осмысленных вычислений, весьма к ним близок. Мы будем считать, что эти игроки неявно выбирают оптимальную стратегию или ведут себя так, будто умеют выполнять такие расчеты наилучшим образом. В главе 5 представлены экспериментальные доказательства того, что накопление опыта ведения игры обусловливает формирование более рационального поведения.

Определение самой лучшей стратегии с учетом аналогичных вычислений соперника – гарантия того, что вы не совершите ошибок, которыми он сможет воспользоваться. Во многих реальных ситуациях вы можете располагать конкретной информацией о том, в чем именно другие игроки недотягивают до стандарта рациональности, и воспользоваться ею в процессе разработки собственной стратегии. Мы кое-что расскажем о подобных расчетах, однако зачастую это все же элемент искусства ведения игр, и его трудно представить в виде правил, подлежащих выполнению. Вы всегда должны помнить о том, что соперники могут просто притворяться, что у них плохие навыки или неэффективная стратегия, проигрывая незначительные суммы в результате плохой игры в надежде на то, что вы поднимете ставки, а они продемонстрируют свой реальный уровень игры и воспользуются вашей доверчивостью. При наличии такого риска безопаснее отталкиваться от предположения, что соперники ведут себя рационально и умеют делать необходимые вычисления, и выбирать лучший ответ на их действия. Иными словами, вам следует исходить из возможностей соперников, а не из их ограничений.

Г. Общее знание правил

Мы полагаем, что на определенном уровне у игроков есть общее понимание правил игры. В комиксе Peanuts («Мелочь пузатая») Люси считала, что в гольфе разрешены силовые приемы, и сбила Чарли Брауна с ног как раз в тот момент, когда он собирался сделать свинг. В теории игр это недопустимо.

Оговорка «на определенном уровне» крайне важна. Мы уже видели, как можно манипулировать правилами текущей игры. Но это лишь признание того, что на более глубоком уровне ведется другая игра – та, в ходе которой игроки выбирают правила игры верхнего уровня. В таком случае возникает резонный вопрос: фиксированы ли эти правила? Например, обратимся к законодательному контексту: каковы правила игры в процессе формирования повестки дня? Они могут сводиться к наличию у председателей комитетов тех или иных полномочий. Тогда как избираются члены комитетов и их председатели? И так далее. На определенном базовом уровне эти правила закреплены конституцией, технологией проведения предвыборной кампании или общими социальными нормами поведения. Мы считаем, что все игроки должны признавать правила этой базовой игры, что и составляет предмет анализа. Безусловно, это идеал; на практике вам может и не представиться возможности продвинуться на достаточно глубокий уровень анализа.

Строго говоря, правила игры состоят: 1) из списка игроков; 2) стратегии, имеющейся в распоряжении каждого игрока; 3) выигрышей каждого игрока по всем возможным комбинациям стратегий, которых придерживаются все игроки; 4) предположения о том, что каждый игрок – это рациональный максимизатор.

Теория игр не позволяет должным образом проанализировать ситуацию, когда один игрок не знает, участвует ли другой игрок в игре, из какого общего множества действий другие игроки выбирают свои действия, какова их система ценностей и являются ли они сознательными максимизаторами своего выигрыша. Однако в реальных стратегических взаимодействиях самую большую выгоду порой можно получить, воспользовавшись элементом неожиданности или совершив то, чего ваши соперники от вас никак не ожидали. Ряд ярких примеров подобного поведения можно найти среди исторических военных конфликтов. Так, в 1967 году Израиль нанес упреждающий удар и уничтожил военно-воздушные силы Египта прямо на земле; в 1973 году наступила очередь Египта застать противника врасплох, начав танковую атаку по всему району Суэцкого канала.

Создается впечатление, что строгое определение теории игр не учитывает столь важного аспекта стратегического поведения, но на самом деле все не так плохо. Теорию можно сформулировать таким образом, чтобы каждый игрок присваивал некую небольшую вероятность ситуации, когда другим игрокам доступны кардинально отличающиеся стратегии. Безусловно, каждый игрок знает имеющийся у него набор стратегий. Следовательно, игра становится игрой с асимметричной информацией и может вестись с использованием методов, представленных в главе 8.

Сама концепция общего знания требует некоторого пояснения. Для того чтобы определенная информация или ситуация X представляла собой общее знание двух человек, А и Б, недостаточно, чтобы каждому из них было известно об Х в отдельности. Каждый игрок должен также знать, что другой знает об Х, в противном случае А может подумать, что Б неизвестно об Х, и в разгар игры предпринять то или иное действие исходя из этого заблуждения. Однако тогда игрок А тоже должен знать, что Б знает, что А знает об Х, и наоборот, иначе А может по ошибке воспользоваться предполагаемым неведением Б о знании А. Безусловно, это еще не конец. Игрок А должен знать, что Б знает, что А знает, что Б знает, и так до бесконечности. Философы находят много забавного в изучении тонкостей этой бесконечной регрессии и тех интеллектуальных парадоксов, которые она может генерировать. Для нас общего представления о том, что игрокам свойственно общее понимание правил игры, будет достаточно.

Д. Равновесие

Что происходит при взаимодействии стратегий рациональных игроков? В большинстве случаев ответ на этот вопрос сводится к концепции равновесия, под которой подразумевается, что каждый игрок использует стратегию, которая является лучшим откликом на стратегии других игроков. Мы сформулируем теоретико-игровые концепции равновесия в главах 3−7, а затем используем их в последующих главах.

Равновесие не означает, что ситуация не меняется; в играх с последовательными ходами стратегии игроков представляют собой исчерпывающий план действий и ответных реакций, а ситуация постоянно развивается по мере выполнения очередных ходов и реагирования на них. Равновесие также не означает, что складывается благоприятный ход игры; взаимодействие выбранных всеми игроками рациональных стратегий может привести к отрицательным результатам для всех, как в дилемме заключенных. Тем не менее в большинстве случаев мы будем исходить из того, что равновесие – полезный описательный инструмент и организующая концепция анализа игры. Подробнее мы рассмотрим эту идею позже, при обсуждении конкретных концепций равновесия. Мы также увидим, как понятие равновесия можно расширить или модифицировать, чтобы устранить некоторые его недостатки и включить в него поведение, которое недотягивает до полной расчетливой рациональности.

Подобно тому как рациональное поведение отдельных игроков может стать следствием накопления ими опыта ведения игры, они могут научиться корреспондировать свой выбор с общим равновесием после нескольких раундов игры, которые проводятся методом проб и ошибок и заканчиваются неравновесным исходом. Мы рассмотрим этот вопрос в главе 5.

Определить равновесие нетрудно, а вот найти его в конкретной игре (иными словами, решить ее) гораздо сложнее. На протяжении всей книги мы разберем целый ряд простых игр с участием двух или трех игроков, каждый из которых использует две-три стратегии или делает ход по очереди. Многие полагают, что это и есть предел возможностей теории игр, считая ее бесполезной для более сложных игр, ведущихся в действительности. Однако это не так.

Человек сильно ограничен в плане скорости вычислений (особенно длинных) и терпения при их выполнении. Следовательно, он способен легко решать только простые игры с двумя-тремя участниками и стратегиями. Но компьютеры прекрасно справляются с подобной задачей. Многие игры, решение которых выходит за рамки вычислительных возможностей человека, компьютерам вполне под силу. Они уже сейчас без проблем решают игры с высоким уровнем сложности, касающиеся бизнеса и политики. Даже в таких играх, как шахматы, которые слишком сложны, чтобы их можно было решить полностью, потенциал компьютеров уже сопоставим с возможностями самых именитых гроссмейстеров. Мы поговорим о шахматах более подробно в главе 3.

В настоящее время существует немало компьютерных программ для решения достаточно сложных игр, и постоянно появляются новые. Mathematica и другие аналогичные программные пакеты содержат стандартные программы для поиска равновесий в смешанных стратегиях в играх с одновременными ходами. В рамках проекта Национального научного фонда Gambit («Гамбит»), возглавляемого профессором Калифорнийского технологического института Ричардом Маккелви и профессором Миннесотского университета Эндрю Макленнаном, разрабатывается всеобъемлющий набор стандартных программ для поиска равновесий в играх с последовательными и одновременными ходами, в чистых и смешанных стратегиях, а также в играх с разными уровнями неопределенности и неполной информацией. В нескольких следующих главах мы будем неоднократно возвращаться к этому проекту. Его ключевое преимущество – открытый исходный код программ, доступ к которому можно получить на сайте проекта www.gambit-project.org.

Но тогда зачем мы подробно описываем в этой книге решение ряда простых игр? Причина в том, что понимание концепций – важная предпосылка эффективного применения технических решений, которые может предоставить компьютер, а понимание приходит только в процессе самостоятельного выполнения ряда простых задач. Именно так вы изучили и теперь используете арифметику. Вы усвоили базовые принципы сложения, вычитания, умножения и деления путем решения простых задач устно или письменно. Теперь это знание позволяет вам выполнять на калькуляторах и компьютерах гораздо более сложные вычисления, чем те, что вы могли бы произвести вручную. Однако без понимания базовых концепций вы при использовании калькуляторов допускали бы ошибки. Например, могли бы решить пример 3 + 4 × 5 неправильно, сгруппировав слагаемые и множители как (3 + 4) × 5 = 35 вместо 3 + (4 × 5) = 23.

Следовательно, первый этап усвоения концепций и методов крайне важен. Без него вы никогда бы не научились правильно формулировать игры, решение которых возлагаете на компьютер. Вы не смогли бы проверить полученное решение на предмет его резонности, и если бы оно действительно таковым не оказалось, вы не смогли бы вернуться к первоначальному описанию игры, улучшить его и решить ее снова, поступая так до тех пор, пока описание игры и ее решение не будут корректно отображать ту стратегическую ситуацию, которую вы хотите изучить. Поэтому, пожалуйста, серьезно отнеситесь к простым примерам, решаемым в этой книге, и к предложенным нами учебным упражнениям, особенно в главах 3−7.

Е. Динамические и эволюционные игры

Теория игр, основанная на предположениях о рациональности и равновесии, весьма полезна, однако было бы ошибкой полагаться исключительно на нее. Когда игры ведут новички, не имеющие опыта выполнения необходимых вычислений для выбора оптимальных стратегий в явном или неявном виде, их выбор, а значит, и исход игры, может существенно отличаться от прогноза, полученного посредством анализа на основании концепции равновесия.

Тем не менее мы не должны отказываться от всех принципов хорошего выбора; нам следует лишь признать тот факт, что даже игроки, не владеющие навыками расчета стратегий, заинтересованы в успешном, выгодном для них исходе игры и будут учиться как на собственном опыте, так и наблюдая за другими игроками. Необходимо учитывать динамический процесс, в соответствии с которым лучшие стратегии, использовавшиеся на предыдущих этапах игры, с большей долей вероятности будут выбраны и на следующих этапах.

Именно это и делает эволюционный подход к играм, основанный на концепции эволюции в биологии. Гены любого отдельно взятого животного существенно влияют на его поведение. Некоторые модели поведения оказываются более успешными в существующей среде в том смысле, что животные, демонстрирующие их, скорее всего, будут благополучно размножаться и передадут свои гены потомству. Эволюционно устойчивое состояние, связанное с данной средой, – это и есть конечный результат процесса, охватывающего несколько поколений.

Аналогично в играх необходимо исходить из предположения, что стратегии не выбираются сознательными рациональными максимизаторами, а вместо этого каждый игрок вступает в игру с определенной «встроенной», или «запрограммированной», стратегией. Далее они противостоят другим игрокам, которые могут быть запрограммированы на применение тех же или иных стратегий. После этого все участники игр получают тот или иной выигрыш. Более эффективные стратегии (в том смысле, что игроки, запрограммированные на их применение, получают более высокий выигрыш) быстро берутся на вооружение, а использование менее результативных снижается. В биологии механизм такого развития или угасания выражается через передачу генетической информации посредством воспроизводства. В контексте стратегических игр в бизнесе и обществе он чаще всего носит социальный или культурный характер и сводится к наблюдению и имитации, обучению и получению знаний, большей доступности капитала для более успешных предприятий и т. д.

Объектом исследования является динамика данного процесса. Стремится ли он к эволюционно устойчивому состоянию? Доминирует ли в итоге одна стратегия, или несколько стратегий могут сосуществовать? Интересно, что во многих играх эволюционно устойчивый предел – это то же самое, что и равновесие, которое было бы достигнуто, если бы игроки сознательно вели себя как рациональные вычислители. Следовательно, эволюционный подход предоставляет нам лазейку для равновесного анализа.

Таким образом, концепция эволюционных игр привнесла биологические идеи в теорию игр, хотя наблюдается и обратное влияние. Биологи поняли, что важные аспекты поведения животных сводятся к стратегическому взаимодействию с другими животными. Члены одного вида конкурируют между собой за среду обитания и партнеров, члены разных видов относятся друг к другу как хищники и охотятся в рамках пищевой цепи. Выигрыш в таких играх, в свою очередь, способствует успешному размножению, а значит, и биологической эволюции. Подобно тому как теория игр извлекла для себя пользу, почерпнув идеи из биологической эволюции для анализа выбора и динамики игр, биология извлекла для себя пользу от заимствования идей теории игр в отношении стратегий и выигрышей для описания характера базовых взаимодействий между животными. Истинный пример синергии и симбиоза! Основные концепции эволюционных игр представлены в главе 12.

Ж. Наблюдение и эксперимент

Весь третий раздел главы до этого момента был посвящен тому, как анализировать игры и стратегические взаимодействия. Это теория. В данной книге она изложена на очень простом уровне с помощью примеров из практики и иллюстраций вместо формальных математических выкладок или теорем, но это все же теория. Любая теория должна соотноситься с реальностью двумя способами. Реальность должна помогать структурировать теорию и обеспечивать проверку ее результатов.

Определить реальные характеристики стратегических взаимодействий позволяют два метода: 1) наблюдение за ними в естественных условиях и 2) проведение специальных экспериментов, помогающих сделать некоторые выводы относительно влияния конкретных условий. Мы приведем несколько примеров применения каждого из этих методов в соответствующем контексте.

Многие изучали стратегические взаимодействия (поведение их участников и его результаты) в условиях эксперимента, в аудиториях среди невольных игроков или в специальных лабораториях с участием добровольцев. Аукционы, переговоры, дилемма заключенных и ряд других игр были исследованы именно таким способом и привели к разным результатам. Некоторые выводы теоретического анализа подтвердились. Например, участники игр в куплю-продажу в большинстве случаев быстро находят экономическое равновесие. В других типах игр результаты существенно отличаются от теоретических прогнозов. В частности, в дилемме заключенных и играх с переговорами участники в большей степени шли на сотрудничество, чем можно было ожидать согласно теории, основанной на предположении об эгоистичном стремлении игроков к получению максимального выигрыша, тогда как аукционы демонстрируют несколько примитивное перебивание цены.

В следующих главах мы представим краткий обзор знаний, накопленных посредством наблюдений и экспериментов, обсудим, как они соотносятся с теорией, и проанализируем, какие ее повторные интерпретации, расширения и модификации были или должны быть выполнены в свете этих знаний.

Стратегические игры. Доступный учебник по теории игр

Подняться наверх