Читать книгу Intelligent Network Management and Control - Badr Benmammar - Страница 20

1.3.3. Rule-based techniques

Оглавление

Rule-based techniques (Li et al. 2010; Yang et al. 2013) generally involve the application of a set of association rules for data classification. In this context, if a rule stipulates that if event X occurs, then event Y is likely to occur, events X and Y can be described as sets of pairs (variable, value). The advantage of using rules is that they tend to be simple and intuitive, unstructured and less rigid. Nevertheless, a drawback is that rules are difficult to preserve and, in certain cases, inadequate for the representation of various types of information.

Turner et al. (2016) developed an algorithm for monitoring the enabled/disabled state of the rules of an intrusion detection system based on signatures. The algorithm is implemented in Python and runs on Snort (Roesch 1999). Agarwal and Joshi (2000) proposed a general framework in two stages for learning a rule-based model (PNrule) in order to learn classifier models on a set of data. They extensively used various distributions of classes in the learning data. The KDD Cups database was used for learning and testing their system.

Intelligent Network Management and Control

Подняться наверх