Читать книгу Finite Element Analysis - Barna Szabó - Страница 2

Table of Contents

Оглавление

Cover

Title Page

Copyright

Preface to the second edition

Preface to the first edition Notes

Preface

About the companion website

1 Introduction to the finite element method 1.1 An introductory problem 1.2 Generalized formulation 1.3 Approximate solutions 1.4 Post‐solution operations 1.5 Estimation of error in energy norm 1.6 The choice of discretization in 1D 1.7 Eigenvalue problems 1.8 Other finite element methods Notes

2 Boundary value problems 2.1 Notation 2.2 The scalar elliptic boundary value problem 2.3 Heat conduction 2.4 Equations of linear elasticity – strong form 2.5 Stokes flow 2.6 Generalized formulation of problems of linear elasticity 2.7 Residual stresses 2.8 Chapter summary Notes

10  3 Implementation 3.1 Standard elements in two dimensions 3.2 Standard polynomial spaces 3.3 Shape functions 3.4 Mapping functions in two dimensions 3.5 Finite element spaces in two dimensions 3.6 Essential boundary conditions 3.7 Elements in three dimensions 3.8 Integration and differentiation 3.9 Stiffness matrices and load vectors 3.10 Post‐solution operations 3.11 Computation of the solution and its first derivatives 3.12 Nodal forces 3.13 Chapter summary Notes

11  4 Pre‐ and postprocessing procedures and verification 4.1 Regularity in two and three dimensions 4.2 The Laplace equation in two dimensions 4.3 The Laplace equation in three dimensions 4.4 Planar elasticity 4.5 Robustness 4.6 Solution verification Notes

12  5 Simulation 5.1 Development of a very useful mathematical model 5.2 Finite element modeling and numerical simulation Notes

13  6 Calibration, validation and ranking 6.1 Fatigue data 6.2 The predictors of Peterson and Neuber 6.3 The predictor Gα 6.4 Biaxial test data 6.5 Management of model development Notes

14  7 Beams, plates and shells 7.1 Beams 7.2 Plates 7.3 Shells 7.4 Chapter summary Notes

15  8 Aspects of multiscale models 8.1 Unidirectional fiber‐reinforced laminae 8.2 Discussion Notes

16  9 Non‐linear models 9.1 Heat conduction 9.2 Solid mechanics 9.3 Chapter summary Notes

17  Appendix A: Appendix ADefinitionsDefinitions A.1 Normed linear spaces, linear functionals and bilinear forms A.2 Convergence in the space A.3 The Schwarz inequality for integrals Notes

18  Appendix B: Appendix BProof of h‐convergenceProof of h‐convergence

19  Appendix C: Appendix CConvergence in 3D: Empirical resultsConvergence in 3D: Empirical results

20  Appendix D: Appendix DLegendre polynomialsLegendre polynomials D.1 Shape functions based on Legendre polynomials

21  Appendix E: Appendix ENumerical quadratureNumerical quadrature E.1 Gaussian quadrature E.2 Gauss‐Lobatto quadrature Note

22  Appendix F: Appendix FPolynomial mapping functionsPolynomial mapping functions F.1 Interpolation on surfaces

23  Appendix G: Appendix GCorner singularities in two‐dimensional elasticityCorner singularities in two‐dimensional elasticity G.1 The Airy stress function G.2 Stress‐free edges Notes

24  Appendix H: Appendix HComputation of stress intensity factorsComputation of stress intensity factors H.1 Singularities at crack tips H.2 The contour integral method H.3 The energy release rate Note

25  Appendix I: Appendix IFundamentals of data analysisFundamentals of data analysis I.1 Statistical foundations I.2 Test data I.3 Statistical models I.4 Ranking I.5 Confidence intervals Notes

26  Appendix J: Appendix JEstimation of fastener forces in structural connectionsEstimation of fastener forces in structural connections

27  Appendix K: Appendix KUseful algorithms in solid mechanicsUseful algorithms in solid mechanics K.1 The traction vector K.2 Transformation of vectors K.3 Transformation of stresses K.4 Principal stresses K.5 The von Mises stress K.6 Statically equivalent forces and moments Notes

28  Bibliography

29  Index

30  End User License Agreement

Finite Element Analysis

Подняться наверх