Читать книгу Finite Element Analysis - Barna Szabó - Страница 40

1.5 Estimation of error in energy norm

Оглавление

We have seen that the finite element solution minimizes the error in energy norm in the sense of eq. (1.48). It is natural therefore to use the energy norm as a measure of the error of approximation. There are two types of error estimators: (a) A priori estimators that establish the asymptotic rate of convergence of a discretization scheme, given information about the regularity (smoothness) of the exact solution and (b) a posteriori estimators that provide estimates of the error in energy norm for the finite element solution of a particular problem.

There is a very substantial body of work in the mathematical literature on the a priori estimation of the rate of convergence, given a quantitative measure of the regularity of the exact solution and a sequence of discretizations. The underlying theory is outside of the scope of this book; however, understanding the main results is important for practitioners of finite element analysis. For details we refer to [28, 45, 70, 84].

Finite Element Analysis

Подняться наверх