Читать книгу Martingales and Financial Mathematics in Discrete Time - Benoîte de Saporta - Страница 2

Оглавление

Table of Contents

Cover

Title Page

Copyright

Preface

Introduction

1 Elementary Probabilities and an Introduction to Stochastic Processes 1.1. Measures and σ-algebras 1.2. Probability elements 1.3. Stochastic processes 1.4. Exercises

2 Conditional Expectation 2.1. Conditional probability with respect to an event 2.2. Conditional expectation 2.3. Geometric interpretation 2.4. Conditional expectation and independence 2.5. Exercises

3 Random Walks 3.1. Trajectories of the random walk 3.2. Asymptotic behavior 3.3. The Gambler’s ruin 3.4. Exercises

4 Martingales 4.1. Definition 4.2. Martingale transform 4.3. The Doob decomposition 4.4. Stopping time 4.5. Stopped martingales 4.6. Exercises

10  5 Financial Markets 5.1. Financial assets 5.2. Investment strategies 5.3. Arbitrage 5.4. The Cox, Ross and Rubinstein model 5.5. Exercises 5.6. Practical work

11  6 European Options 6.1. Definition 6.2. Complete markets 6.3. Valuation and hedging 6.4. Cox, Ross and Rubinstein model 6.5. Exercises 6.6. Practical work: Simulating the value of a call option

12  7 American Options 7.1. Definition 7.2. Optimal stopping 7.3. Application to American options 7.4. The Cox, Ross and Rubinstein model 7.5. Exercises 7.6. Practical work

13  8 Solutions to Exercises and Practical Work 8.1. Solutions to exercises in Chapter 1 8.2. Solutions to exercises in Chapter 2 8.3. Solutions to exercises in Chapter 3 8.4. Solutions to exercises in Chapter 4 8.5. Solutions to exercises in Chapter 5 8.6. Solutions to the practical exercises in Chapter 5 8.7. Solutions to exercises in Chapter 6 8.8. Solution to the practical exercise in Chapter 6 (section 6.6) 8.9. Solution to exercises in Chapter 7 8.10. Solution to the practical exercise in Chapter 7 (section 7.6)

14  References

15  Index

16  End User License Agreement

List of Illustrations

1 Chapter 3Figure 3.1. Graphical representation of a trajectory of a random walk between 0 ...Figure 3.2. Two paths from (1, 1) to (5, 3). For a color version of this figure,...Figure 3.3. A path from (0, 2) to (11, 1) passing through 0 (the unbroken blue l...

2 Chapter 8Figure 8.1. Possible trajectories for the random walk of four steps starting fro...Figure 8.2. Possible paths from (0, 0) to (3, 1). For a color version of this fi...Figure 8.3. Event tree for the financial market in Exercise 5.1Figure 8.4. Event tree for the financial market in Exercise 5.3Figure 8.5. Trajectories of the risky asset for the Cox, Ross and Rubinstein mod...Figure 8.6. Trajectories of the risky asset (blue) and the risk-free asset (gray...Figure 8.7. Trajectory of the logarithm of the wealth for the optimal strategy (...Figure 8.8. Trajectories of the expectation of the logarithm of the wealth for t...Figure 8.9. Trajectories of the wealth for the investment-withdrawal strategy in...Figure 8.10. Trajectories of the wealth for the investment-withdrawal strategy i...Figure 8.11. Trajectories of the logarithm of the cumulative withdrawal for the ...Figure 8.12. Trajectories of the expectation of the cumulative sum of the logari...Figure 8.13. Trajectories of the risky asset (blue) and the value of the Europea...Figure 8.14. Trajectories of the payoff for the American option with maturity da...Figure 8.15. Trajectories for the payoff (red) and for the value (blue) of an Am...

List of Tables

1 Chapter 8Table 8.1. Distribution of the random variable STable 8.2. Distribution of the random variable X7Table 8.3. The distribution of the random variable X6Table 8.4. Values for the probability p of satisfying all moviegoers based on th...Table 8.5. Trajectories of the payoff (Z) and of the value (U) of the American o...Table 8.6. Trajectories of the payoff (Z) and of the value (U) of the American o...

Guide

Cover

Table of Contents

Title Page

Copyright

Preface

Introduction

Begin Reading

References

Index

10  End User License Agreement

Pages

v

iii

iv

ix

x

xi

xii

1

2

10  3

11  4

12  5

13  6

14  7

15  8

16  9

17  10

18  11

19 12

20  13

21  14

22  15

23 16

24  17

25  18

26  19

27  20

28  21

29  22

30  23

31  24

32  25

33  26

34  27

35  28

36  29

37  30

38  31

39  32

40  33

41  34

42  35

43  36

44  37

45  38

46  39

47  40

48  41

49  42

50  43

51  44

52  45

53  46

54  47

55  48

56  49

57  50

58  51

59  52

60  53

61  54

62  55

63  56

64  57

65  58

66  59

67  60

68  61

69  62

70  63

71  64

72  65

73  66

74  67

75  68

76  69

77  70

78  71

79  72

80  73

81  74

82  75

83  76

84 77

85  78

86 79

87 80

88  81

89  82

90  83

91  84

92  85

93  86

94  87

95  88

96  89

97  90

98 91

99  92

100 93

101  95

102  96

103  97

104  98

105  99

106  100

107  101

108  102

109  103

110  104

111 105

112  106

113  107

114  108

115  109

116  110

117  111

118  112

119  113

120  114

121  115

122  116

123  117

124 118

125  119

126 120

127  121

128  122

129 123

130  124

131  125

132  126

133  127

134  128

135  129

136  130

137  131

138  132

139  133

140  134

141  135

142  136

143  137

144  138

145  139

146  140

147  141

148  142

149  143

150  144

151  145

152  146

153  147

154  148

155  149

156  150

157  151

158  152

159  153

160  154

161  155

162  156

163  157

164  158

165  159

166  160

167  161

168  162

169  163

170  164

171  165

172  166

173  167

174  168

175  169

176  170

177  171

178  172

179  173

180  174

181  175

182  176

183  177

184  178

185  179

186  180

187  181

188  182

189  183

190  184

191  185

192  186

193  187

194  188

195  189

196  190

197  191

198  192

199  193

200  194

201  195

202  196

203  197

204  198

205  199

206  200

207  201

208  202

209  203

210  204

211  205

212 206

213  207

214 208

215  209

216  210

217  211

218  212

219  213

220  214

221  215

222  216

Martingales and Financial Mathematics in Discrete Time

Подняться наверх