Читать книгу Martingales and Financial Mathematics in Discrete Time - Benoîte de Saporta - Страница 2
ОглавлениеTable of Contents
1 Cover
4 Preface
6 1 Elementary Probabilities and an Introduction to Stochastic Processes 1.1. Measures and σ-algebras 1.2. Probability elements 1.3. Stochastic processes 1.4. Exercises
7 2 Conditional Expectation 2.1. Conditional probability with respect to an event 2.2. Conditional expectation 2.3. Geometric interpretation 2.4. Conditional expectation and independence 2.5. Exercises
8 3 Random Walks 3.1. Trajectories of the random walk 3.2. Asymptotic behavior 3.3. The Gambler’s ruin 3.4. Exercises
9 4 Martingales 4.1. Definition 4.2. Martingale transform 4.3. The Doob decomposition 4.4. Stopping time 4.5. Stopped martingales 4.6. Exercises
10 5 Financial Markets 5.1. Financial assets 5.2. Investment strategies 5.3. Arbitrage 5.4. The Cox, Ross and Rubinstein model 5.5. Exercises 5.6. Practical work
11 6 European Options 6.1. Definition 6.2. Complete markets 6.3. Valuation and hedging 6.4. Cox, Ross and Rubinstein model 6.5. Exercises 6.6. Practical work: Simulating the value of a call option
12 7 American Options 7.1. Definition 7.2. Optimal stopping 7.3. Application to American options 7.4. The Cox, Ross and Rubinstein model 7.5. Exercises 7.6. Practical work
13 8 Solutions to Exercises and Practical Work 8.1. Solutions to exercises in Chapter 1 8.2. Solutions to exercises in Chapter 2 8.3. Solutions to exercises in Chapter 3 8.4. Solutions to exercises in Chapter 4 8.5. Solutions to exercises in Chapter 5 8.6. Solutions to the practical exercises in Chapter 5 8.7. Solutions to exercises in Chapter 6 8.8. Solution to the practical exercise in Chapter 6 (section 6.6) 8.9. Solution to exercises in Chapter 7 8.10. Solution to the practical exercise in Chapter 7 (section 7.6)
14 References
15 Index
List of Illustrations
1 Chapter 3Figure 3.1. Graphical representation of a trajectory of a random walk between 0 ...Figure 3.2. Two paths from (1, 1) to (5, 3). For a color version of this figure,...Figure 3.3. A path from (0, 2) to (11, 1) passing through 0 (the unbroken blue l...
2 Chapter 8Figure 8.1. Possible trajectories for the random walk of four steps starting fro...Figure 8.2. Possible paths from (0, 0) to (3, 1). For a color version of this fi...Figure 8.3. Event tree for the financial market in Exercise 5.1Figure 8.4. Event tree for the financial market in Exercise 5.3Figure 8.5. Trajectories of the risky asset for the Cox, Ross and Rubinstein mod...Figure 8.6. Trajectories of the risky asset (blue) and the risk-free asset (gray...Figure 8.7. Trajectory of the logarithm of the wealth for the optimal strategy (...Figure 8.8. Trajectories of the expectation of the logarithm of the wealth for t...Figure 8.9. Trajectories of the wealth for the investment-withdrawal strategy in...Figure 8.10. Trajectories of the wealth for the investment-withdrawal strategy i...Figure 8.11. Trajectories of the logarithm of the cumulative withdrawal for the ...Figure 8.12. Trajectories of the expectation of the cumulative sum of the logari...Figure 8.13. Trajectories of the risky asset (blue) and the value of the Europea...Figure 8.14. Trajectories of the payoff for the American option with maturity da...Figure 8.15. Trajectories for the payoff (red) and for the value (blue) of an Am...
List of Tables
1 Chapter 8Table 8.1. Distribution of the random variable STable 8.2. Distribution of the random variable X7Table 8.3. The distribution of the random variable X6Table 8.4. Values for the probability p of satisfying all moviegoers based on th...Table 8.5. Trajectories of the payoff (Z) and of the value (U) of the American o...Table 8.6. Trajectories of the payoff (Z) and of the value (U) of the American o...
Pages
1 v
2 iii
3 iv
4 ix
5 x
6 xi
7 xii
8 1
9 2
10 3
11 4
12 5
13 6
14 7
15 8
16 9
17 10
18 11
19 12
20 13
21 14
22 15
23 16
24 17
25 18
26 19
27 20
28 21
29 22
30 23
31 24
32 25
33 26
34 27
35 28
36 29
37 30
38 31
39 32
40 33
41 34
42 35
43 36
44 37
45 38
46 39
47 40
48 41
49 42
50 43
51 44
52 45
53 46
54 47
55 48
56 49
57 50
58 51
59 52
60 53
61 54
62 55
63 56
64 57
65 58
66 59
67 60
68 61
69 62
70 63
71 64
72 65
73 66
74 67
75 68
76 69
77 70
78 71
79 72
80 73
81 74
82 75
83 76
84 77
85 78
86 79
87 80
88 81
89 82
90 83
91 84
92 85
93 86
94 87
95 88
96 89
97 90
98 91
99 92
100 93
101 95
102 96
103 97
104 98
105 99
106 100
107 101
108 102
109 103
110 104
111 105
112 106
113 107
114 108
115 109
116 110
117 111
118 112
119 113
120 114
121 115
122 116
123 117
124 118
125 119
126 120
127 121
128 122
129 123
130 124
131 125
132 126
133 127
134 128
135 129
136 130
137 131
138 132
139 133
140 134
141 135
142 136
143 137
144 138
145 139
146 140
147 141
148 142
149 143
150 144
151 145
152 146
153 147
154 148
155 149
156 150
157 151
158 152
159 153
160 154
161 155
162 156
163 157
164 158
165 159
166 160
167 161
168 162
169 163
170 164
171 165
172 166
173 167
174 168
175 169
176 170
177 171
178 172
179 173
180 174
181 175
182 176
183 177
184 178
185 179
186 180
187 181
188 182
189 183
190 184
191 185
192 186
193 187
194 188
195 189
196 190
197 191
198 192
199 193
200 194
201 195
202 196
203 197
204 198
205 199
206 200
207 201
208 202
209 203
210 204
211 205
212 206
213 207
214 208
215 209
216 210
217 211
218 212
219 213
220 214
221 215
222 216