Читать книгу General Science - Bertha May Clark - Страница 6

HEAT

Оглавление

Table of Contents

I. Value of Fire. Every day, uncontrolled fire wipes out human lives and destroys vast amounts of property; every day, fire, controlled and regulated in stove and furnace, cooks our food and warms our houses. Fire melts ore and allows of the forging of iron, as in the blacksmith's shop, and of the fashioning of innumerable objects serviceable to man. Heated boilers change water into the steam which drives our engines on land and sea. Heat causes rain and wind, fog and cloud; heat enables vegetation to grow and thus indirectly provides our food. Whether heat comes directly from the sun or from artificial sources such as coal, wood, oil, or electricity, it is vitally connected with our daily life, and for this reason the facts and theories relative to it are among the most important that can be studied. Heat, if properly regulated and controlled, would never be injurious to man; hence in the following paragraphs heat will be considered merely in its helpful capacity.

FIG. 1.--As the water becomes warmer it expands and rise in the narrow tube.

2. General Effect of Heat. Expansion and Contraction. One of the best-known effects of heat is the change which it causes in the size of a substance. Every housewife knows that if a kettle is filled with cold water to begin with, there will be an overflow as soon as the water becomes heated. Heat causes not only water, but all other liquids, to occupy more space, or to expand, and in some cases the expansion, or increase in size, is surprisingly large. For example, if 100 pints of ice water is heated in a kettle, the 100 pints will steadily expand until, at the boiling point, it will occupy as much space as 104 pints of ice water.

FIG. 2.—When the ball is heated, it become too large to slip through the ring.

The expansion of water can be easily shown by heating a flask (Fig. I) filled with water and closed by a cork through which a narrow tube passes. As the water is heated, it expands and forces its way up the narrow tube. If the heat is removed, the liquid cools, contracts, and slowly falls in the tube, resuming in time its original size or volume. A similar observation can be made with alcohol, mercury, or any other convenient liquid.

Not only liquids are affected by heat and cold, but solids also are subject to similar changes. A metal ball which when cool will just slip through a ring (Fig. 2) will, when heated, be too large to slip through the ring. Telegraph and telephone wires which in winter are stretched taut from pole to pole, sag in hot weather and are much too long. In summer they are exposed to the fierce rays of the sun, become strongly heated, and expand sufficiently to sag. If the wires were stretched taut in the summer, there would not be sufficient leeway for the contraction which accompanies cold weather, and in winter they would snap.

FIG. 3—As the air in A is heated, it expands and escapes in the form of bubbles.

Air expands greatly when heated (Fig. 3), but since air is practically invisible, we are not ordinarily conscious of any change in it. The expansion of air can be readily shown by putting a drop of ink in a thin glass tube, inserting the tube in the cork of a flask, and applying heat to the flask (Fig. 4). The ink is forced up the tube by the expanding air. Even the warmth of the hand is generally sufficient to cause the drop to rise steadily in the tube. The rise of the drop of ink shows that the air in the flask occupies more space than formerly, and since the quantity of air has not changed, each cubic inch of space must hold less warm air than| it held of cold air; that is, one cubic inch of warm air weighs less than one cubic inch of cold air, or warm air is less dense than cold air. All gases, if not confined, expand when heated and contract as they cool. Heat, in general, causes substances to expand or become less dense.

3. Amount of Expansion and Contraction. While most substances expand when heated and contract when cooled, they are not all affected equally by the same changes in temperature. Alcohol expands more than water, and water more than mercury. Steel wire which measures ¼ mile on a snowy day will gain 25 inches in length on a warm summer day, and an aluminum wire under the same conditions would gain 50 inches in length.

4. Advantages and Disadvantages of Expansion and Contraction. We owe the snug fit of metal tires and bands to the expansion and contraction resulting from heating and cooling. The tire of a wagon wheel is made slightly smaller than the wheel which it is to protect; it is then put into a very hot fire and heated until it has expanded sufficiently to slip on the wheel. As the tire cools it contracts and fits the wheel closely.

FIG. 4.—As the air in A is heated, it expands and forces the drop of ink up the tube.

In a railroad, spaces are usually left between consecutive rails in order to allow for expansion during the summer.

The unsightly cracks and humps in cement floors are sometimes due to the expansion resulting from heat (Fig. 5). Cracking from this cause can frequently be avoided by cutting the soft cement into squares, the spaces between them giving opportunity for expansion just as do the spaces between the rails of railroads.

FIG. 5: A cement walk broken by expansion due to sun heat.

In the construction of long wire fences provision must be made for tightening the wire in summer, otherwise great sagging would occur.

Heat plays an important part in the splitting of rocks and in the formation of débris. Rocks in exposed places are greatly affected by changes in temperature, and in regions where the changes in temperature are sudden, severe, and frequent, the rocks are not able to withstand the strain of expansion and contraction, and as a result crack and split. In the Sahara Desert much crumbling of the rock into sand has been caused by the intense heat of the day followed by the sharp frost of night. The heat of the day causes the rocks to expand, and the cold of night causes them to contract, and these two forces constantly at work loosen the grains of the rock and force them out of place, thus producing crumbling.

FIG. 6.—Splitting and crumbling of rock caused by alternating heat and cold.

The surface of the rock is the most exposed part, and during the day the surface, heated by the sun's rays, expands and becomes too large for the interior, and crumbling and splitting result from the strain. With the sudden fall of temperature in the late afternoon and night, the surface of the rock becomes greatly chilled and colder than the rock beneath; the surface rock therefore contracts and shrinks more than the underlying rock, and again crumbling results (Fig. 6).

FIG. 7.—Debris formed from crumbled rock.

On bare mountains, the heating and cooling effects of the sun are very striking(Fig. 7); the surface of many a mountain peak is covered with cracked rock so insecure that a touch or step will dislodge the fragments and start them down the mountain slope. The lower levels of mountains are frequently buried several feet under débris which has been formed in this way from higher peaks, and which has slowly accumulated at the lower levels.

5. Temperature. When an object feels hot to the touch, we say that it has a high temperature; when it feels cold to the touch, that it has a low temperature; but we are not accurate judges of heat. Ice water seems comparatively warm after eating ice cream, and yet we know that ice water is by no means warm. A room may seem warm to a person who has been walking in the cold air, while it may feel decidedly cold to some one who has come from a warmer room. If the hand is cold, lukewarm water feels hot, but if the hand has been in very hot water and is then transferred to lukewarm water, the latter will seem cold. We see that the sensation or feeling of warmth is not an accurate guide to the temperature of a substance; and yet until 1592, one hundred years after the discovery of America, people relied solely upon their sensations for the measurement of temperature. Very hot substances cannot be touched without injury, and hence inconvenience as well as the necessity for accuracy led to the invention of the thermometer, an instrument whose operation depends upon the fact that most substances expand when heated and contract when cooled.

FIG. 8.— Making a thermometer.

FIG. 9.—Determining one of the fixed points of a thermometer.

6. The Thermometer. The modern thermometer consists of a glass tube at the lower end of which is a bulb filled with mercury or colored alcohol (Fig. 8). After the bulb has been filled with the mercury, it is placed in a beaker of water and the water is heated by a Bunsen burner. As the water becomes warmer and warmer the level of the mercury in the tube steadily rises until the water boils, when the level remains stationary (Fig. 9). A scratch is made on the tube to indicate the point to which the mercury rises when the bulb is placed in boiling water, and this point is marked 212°. The tube is then removed from the boiling water, and after cooling for a few minutes, it is placed in a vessel containing finely chopped ice (Fig. 10). The mercury column falls rapidly, but finally remains stationary, and at this level another scratch is made on the tube and the point is marked 32°. The space between these two points, which represent the temperatures of boiling water and of melting ice, is divided into 180 equal parts called degrees. The thermometer in use in the United States is marked in this way and is called the Fahrenheit thermometer after its designer. Before the degrees are etched on the thermometer the open end of the tube is sealed.

The Centigrade thermometer, in use in foreign countries and in all scientific work, is similar to the Fahrenheit except that the fixed points are marked 100° and 0°, and the interval between the points is divided into 100 equal parts instead of into 180.

The boiling point of water is 212° F. or 100° C.

The melting point of ice is 32° F. or 0° C.

Glass thermometers of the above type are the ones most generally used, but there are many different types for special purposes.

FIG. 10.—Determining the lower fixed point of a thermometer.

7. Some Uses of a Thermometer. One of the chief values of a thermometer is the service it has rendered to medicine. If a thermometer is held for a few minutes under the tongue of a normal, healthy person, the mercury will rise to about 98.4° F. If the temperature of the body registers several degrees above or below this point, a physician should be consulted immediately. The temperature of the body is a trustworthy indicator of general physical condition; hence in all hospitals the temperature of patients is carefully taken at stated intervals.

Commercially, temperature readings are extremely important. In sugar refineries the temperature of the heated liquids is observed most carefully, since a difference in temperature, however slight, affects not only the general appearance of sugars and sirups, but the quality as well. The many varieties of steel likewise show the influence which heat may have on the nature of a substance. By observation and tedious experimentation it has been found that if hardened steel is heated to about 450° F. and quickly cooled, it gives the fine cutting edge of razors; if it is heated to about 500° F. and then cooled, the metal is much coarser and is suitable for shears and farm implements; while if it is heated but 50° F. higher, that is, to 550° F., it gives the fine elastic steel of watch springs.

FIG. 11.—A well-made commercial thermometer.

A thermometer could be put to good use in every kitchen; the inexperienced housekeeper who cannot judge of the "heat" of the oven would be saved bad bread, etc., if the thermometer were a part of her equipment. The thermometer can also be used in detecting adulterants. Butter should melt at 94° F.; if it does not, you may be sure that it is adulterated with suet or other cheap fat. Olive oil should be a clear liquid above 75° F.; if, above this temperature, it looks cloudy, you may be sure that it too is adulterated with fat.

8. Methods of Heating Buildings. Open Fireplaces and Stoves. Before the time of stoves and furnaces, man heated his modest dwelling by open fires alone. The burning logs gave warmth to the cabin and served as a primitive cooking agent; and the smoke which usually accompanies burning bodies was carried away by means of the chimney. But in an open fireplace much heat escapes with the smoke and is lost, and only a small portion streams into the room and gives warmth.

When fuel is placed in an open fireplace (Fig. 12) and lighted, the air immediately surrounding the fire becomes warmer and, because of expansion, becomes lighter than the cold air above. The cold air, being heavier, falls and forces the warmer air upward, and along with the warm air goes the disagreeable smoke. The fall of the colder and heavier air, and the rise of the warmer and hence lighter air, is similar to the exchange which takes place when water is poured on oil; the water, being heavier than oil, sinks to the bottom and forces the oil to the surface. The warmer air which escapes up the chimney carries with it the disagreeable smoke, and when all the smoke is got rid of in this way, the chimney is said to draw well.

As the air is heated by the fire it expands, and is pushed up the chimney by the cold air which is constantly entering through loose windows and doors. Open fireplaces are very healthful because the air which is driven out is impure, while the air which rushes in is fresh and brings oxygen to the human being.

FIG. 12.—The open fireplace as an early method of heating.

But open fireplaces, while pleasant to look at, are not efficient for either heating or cooking. The possibilities for the latter are especially limited, and the invention of stoves was a great advance in efficiency, economy, and comfort. A stove is a receptacle for fire, provided with a definite inlet for air and a definite outlet for smoke, and able to radiate into the room most of the heat produced from the fire which burns within. The inlet, or draft, admits enough air to cause the fire to burn brightly or slowly as the case may be. If we wish a hot fire, the draft is opened wide and enough air enters to produce a strong glow. If we wish a low fire, the inlet is only partially opened, and just enough air enters to keep the fuel smoldering.

FIG. 13.—A furnace. Pipes conduct hot air to the rooms.

When the fire is started, the damper should be opened wide in order to allow the escape of smoke; but after the fire is well started there is less smoke, and the damper may be partly closed. If the damper is kept open, coal is rapidly consumed, and the additional heat passes out through the chimney, and is lost to use.

9. Furnaces. Hot Air. The labor involved in the care of numerous stoves is considerable, and hence the advent of a central heating stove, or furnace, was a great saving in strength and fuel. A furnace is a stove arranged as in Figure 13. The stove S, like all other stoves, has an inlet for air and an outlet C for smoke; but in addition, it has built around it a chamber in which air circulates and is warmed. The air warmed by the stove is forced upward by cold air which enters from outside. For example, cold air constantly entering at E drives the air heated by S through pipes and ducts to the rooms to be heated.

The metal pipes which convey the heated air from the furnace to the ducts are sometimes covered with felt, asbestos, or other non-conducting material in order that heat may not be lost during transmission. The ducts which receive the heated air from the pipes are built in the non-conducting walls of the house, and hence lose practically no heat. The air which reaches halls and rooms is therefore warm, in spite of its long journey from the cellar.

Not only houses are warmed by a central heating stove, but whole communities sometimes depend upon a central heating plant. In the latter case, pipes closely wrapped with a non-conducting material carry steam long distances underground to heat remote buildings. Overbrook and Radnor, Pa., are towns in which such a system is used.

FIG. 14.—Hot-water heating.

10. Hot-water Heating. The heated air which rises from furnaces is seldom hot enough to warm large buildings well; hence furnace heating is being largely supplanted by hot-water heating.

FIG. 15.—The principle of hot-water heating.

The principle of hot-water heating is shown by the following simple experiment. Two flasks and two tubes are arranged as in Figure 15, the upper flask containing a colored liquid and the lower flask clear water. If heat is applied to B, one can see at the end of a few seconds the downward circulation of the colored liquid and the upward circulation of the clear water. If we represent a boiler by B, a radiator by the coiled tube, and a safety tank by C, we shall have a very fair illustration of the principle of a hot-water heating system. The hot water in the radiators cools and, in cooling, gives up its heat to the rooms and thus warms them.

In hot-water heating systems, fresh air is not brought to the rooms, for the radiators are closed pipes containing hot water. It is largely for this reason that thoughtful people are careful to raise windows at intervals. Some systems of hot-water heating secure ventilation by confining the radiators to the basement, to which cold air from outside is constantly admitted in such a way that it circulates over the radiators and becomes strongly heated. This warm fresh air then passes through ordinary flues to the rooms above.

In Figure 16, a radiator is shown in a boxlike structure in the cellar. Fresh air from outside enters a flue at the right, passes the radiator, where it is warmed, and then makes its way to the room through a flue at the left. The warm air which thus enters the room is thoroughly fresh. The actual labor involved in furnace heating and in hot-water heating is practically the same, since coal must be fed to the fire, and ashes must be removed; but the hot-water system has the advantage of economy and cleanliness.

FIG. 16.—Fresh air from outside circulates over the radiators and then rises into the rooms to be heated.

11. Fresh Air. Fresh air is essential to normal healthy living, and 2000 cubic feet of air per hour is desirable for each individual. If a gentle breeze is blowing, a barely perceptible opening of a window will give the needed amount, even if there are no additional drafts of fresh air into the room through cracks. Most houses are so loosely constructed that fresh air enters imperceptibly in many ways, and whether we will or no, we receive some fresh air. The supply is, however, never sufficient in itself and should not be depended upon alone. At night, or at any other time when gas lights are required, the need for ventilation increases, because every gas light in a room uses up the same amount of air as four people.

General Science

Подняться наверх