Читать книгу An essay on the foundations of geometry - Bertrand Russell - Страница 5
CHAPTER I.
A SHORT HISTORY OF METAGEOMETRY.
Оглавление10. When a long established system is attacked, it usually happens that the attack begins only at a single point, where the weakness of the established doctrine is peculiarly evident. But criticism, when once invited, is apt to extend much further than the most daring, at first, would have wished.
"First cut the liquefaction, what comes last,
But Fichte's clever cut at God himself?"
So it has been with Geometry. The liquefaction of Euclidean orthodoxy is the axiom of parallels, and it was by the refusal to admit this axiom without proof that Metageometry began. The first effort in this direction, that of Legendre[5], was inspired by the hope of deducing this axiom from the others—a hope which, as we now know, was doomed to inevitable failure. Parallels are defined by Legendre as lines in the same plane, such that, if a third line cut them, it makes the sum of the interior and opposite angles equal to two right angles. He proves without difficulty that such lines would not meet, but is unable to prove that non-parallel lines in a plane must meet. Similarly he can prove that the sum of the angles of a triangle cannot exceed two right angles, and that if any one triangle has a sum equal to two right angles, all triangles have the same sum; but he is unable to prove the existence of this one triangle.
11. Thus Legendre's attempt broke down; but mere failure could prove nothing. A bolder method, suggested by Gauss, was carried out by Lobatchewsky and Bolyai[6]. If the axiom of parallels is logically deducible from the others, we shall, by denying it and maintaining the rest, be led to contradictions. These three mathematicians, accordingly, attacked the problem indirectly: they denied the axiom of parallels, and yet obtained a logically consistent Geometry. They inferred that the axiom was logically independent of the others, and essential to the Euclidean system. Their works, being all inspired by this motive, may be distinguished as forming the first period in the development of Metageometry.
The second period, inaugurated by Riemann, had a much deeper import: it was largely philosophical in its aims and constructive in its methods. It aimed at no less than a logical analysis of all the essential axioms of Geometry, and regarded space as a particular case of the more general conception of a manifold. Taking its stand on the methods of analytical metrical Geometry, it established two non-Euclidean systems, the first that of Lobatchewsky, the second—in which the axiom of the straight line, in Euclid's form, was also denied—a new variety, by analogy called spherical. The leading conception in this period is the measure of curvature, a term invented by Gauss, but applied by him only to surfaces. Gauss had shown that free mobility on surfaces was only possible when the measure of curvature was constant; Riemann and Helmholtz extended this proposition to n dimensions, and made it the fundamental property of space.
In the third period, which begins with Cayley, the philosophical motive, which had moved the first pioneers, is less apparent, and is replaced by a more technical and mathematical spirit. This period is chiefly distinguished from the second, in a mathematical point of view, by its method, which is projective instead of metrical. The leading mathematical conception here is the Absolute (Grundgebild), a figure by relation to which all metrical properties become projective. Cayley's work, which was very brief, and attracted little attention, has been perfected and elaborated by F. Klein, and through him has found general acceptance. Klein has added to the two kinds of non-Euclidean Geometry already known, a third, which he calls elliptic; this third kind closely resembles Helmholtz's spherical Geometry, but is distinguished by the important difference that, in it, two straight lines meet in only one point[7]. The distinctive mark of the spaces represented by both is that, like the surface of a sphere, they are finite but unbounded. The reduction of metrical to projective properties, as will be proved hereafter, has only a technical importance; at the same time, projective Geometry is able to deal directly with those purely descriptive or qualitative properties of space which are common to Euclid and Metageometry alike. The third period has, therefore, great philosophical importance, while its method has, mathematically, much greater beauty and unity than that of the second; it is able to treat all kinds of space at once, so that every symbolic proposition is, according to the meaning given to the symbols, a proposition in whichever Geometry we choose. This has the advantage of proving that further research cannot lead to contradictions in non-Euclidean systems, unless it at the same moment reveals contradictions in Euclid. These systems, therefore, are logically as sound as that of Euclid himself.
After this brief sketch of the characteristics of the three periods, I will proceed to a more detailed account. It will be my aim to avoid, as far as possible, all technical mathematics, and bring into relief only those fundamental points in the mathematical development, which seem of logical or philosophical importance.