Читать книгу Почему Е=mc²? И почему это должно нас волновать - Брайан Кокс - Страница 4

1. Пространство и время

Оглавление

Что для вас значат слова «пространство» и «время»? Возможно, вы представляете себе пространство как тьму между звездами, которую видите, глядя на небо холодной зимней ночью? Или как пустоту между Землей и Луной, в которой мчится космический корабль со звездами и полосами, пилотируемый парнем по имени Базз[2]? Время можно представить как тиканье ваших часов или осеннее превращение листьев из зеленых в красные и желтые, когда Солнце проходит по небу все ниже в пятимиллиардный раз. Мы все интуитивно ощущаем пространство и время; они – неотъемлемая часть нашего существования. Мы движемся через пространство на поверхности голубой планеты, пока время ведет свой отсчет.

Ряд научных открытий, сделанных в последние годы XIX столетия на первый взгляд в совершенно не связанных между собой областях, побудил физиков пересмотреть простые и интуитивные картины пространства и времени. В начале XX века Герман Минковский, коллега и учитель Альберта Эйнштейна, написал свой знаменитый некролог древней сфере с орбитами, по которым путешествовали планеты: «Отныне пространство само по себе и время само по себе превратились не более чем в тени, и имеется только своего рода смешение этих двух понятий».

Что Минковский подразумевал под смешением пространства и времени? Чтобы разобраться в сути этого почти мистического утверждения, необходимо понять специальную теорию относительности Эйнштейна, которая представила миру наиболее известное из всех уравнений, E = mc², и навсегда поместила в центр нашего понимания устройства Вселенной величину, обозначаемую символом c – скорость света.

Специальная теория относительности Эйнштейна – это фактически описание пространства и времени. Центральное место в ней занимает понятие особой скорости, которую невозможно превзойти никаким ускорением, каким бы сильным оно ни было. Эта скорость – скорость света в вакууме, составляющая 299 792 458 метров в секунду. Путешествуя с такой скоростью, луч света, покинувший Землю, через восемь минут пролетит мимо Солнца, за 100 тысяч лет пересечет нашу Галактику Млечный Путь, а через два миллиона лет достигнет ближайшей соседней галактики – Туманности Андромеды. Сегодня ночью крупнейшие телескопы Земли будут вглядываться в черноту межзвездного пространства и ловить древние лучи света от дальних, давно умерших звезд на краю наблюдаемой Вселенной. Эти лучи начали свое путешествие более 10 миллиардов лет назад, за несколько миллиардов лет до возникновения Земли из сжимающегося облака межзвездной пыли. Скорость света велика, но далеко не бесконечна. По сравнению c огромными расстояниями между звездами и галактиками она может казаться удручающе низкой – настолько, что мы в состоянии ускорить очень малые объекты до скоростей, отличающихся от скорости света на доли процента, с помощью такой техники, как 27-километровый Большой адронный коллайдер в Европейском центре ядерных исследований в Женеве.

Существование специальной, предельной космической скорости – достаточно странная концепция. Как мы узнаем позже из этой книги, связь этой скорости со скоростью света – своего рода подмена понятий. Предельная космическая скорость играет гораздо более важную роль во Вселенной Эйнштейна, и есть веская причина, по которой луч света перемещается именно с данной скоростью. Однако мы к этому еще вернемся. А пока достаточно сказать, что по достижении объектами этой особой скорости начинают происходить странные вещи. Как можно предотвратить превышение объектом этой скорости? Это выглядит так, словно существует универсальный закон физики, не позволяющий вашей машине разогнаться свыше 90 километров в час, независимо от мощности двигателя. Но в отличие от ограничения скорости автомобиля выполнение этого закона обеспечивается не какой-то неземной полицией. Его нарушение становится абсолютно невозможным благодаря самому построению ткани пространства и времени, и это исключительное везение, поскольку в противном случае мы имели бы дело с очень неприятными последствиями. Позже мы увидим, что если бы можно было превышать скорость света, то мы могли бы построить машину времени, переносящую нас в любую точку истории. Например, мы могли бы отправиться в период до нашего рождения и случайно или преднамеренно помешать встрече родителей. Это неплохой сюжет для фантастической литературы, но не для создания Вселенной. И действительно, Эйнштейн выяснил, что Вселенная устроена совсем не так. Пространство и время настолько тонко переплетены, что подобные парадоксы недопустимы. Однако все имеет свою цену, и в данном случае эта цена – наш отказ от глубоко укоренившихся представлений о пространстве и времени. Во Вселенной Эйнштейна движущиеся часы идут медленнее, движущиеся объекты сокращаются в размере и мы можем путешествовать на миллиарды лет в будущее. Это Вселенная, где человеческая жизнь может растянуться почти до бесконечности. Мы могли бы наблюдать угасание Солнца, испарение океанов, погружение Солнечной системы в вечную ночь, рождение звезд из облаков межзвездной пыли, формирование планет и, возможно, зарождение жизни в новых, пока еще не сформировавшихся мирах. Вселенная Эйнштейна позволяет нам путешествовать в далекое будущее, вместе с тем удерживая двери в прошлое плотно закрытыми.

К концу этой книги мы увидим, как Эйнштейн был вынужден прийти к столь фантастической картине Вселенной и как ее корректность была неоднократно доказана в ходе большого количества научных экспериментов и технологического применения. Например, спутниковая навигационная система в автомобиле разработана с учетом того факта, что время на орбите спутников и на земной поверхности движется с разной скоростью. Картина Эйнштейна радикальна: пространство и время – совсем не то, чем нам кажутся.

Но не будем забегать вперед. Чтобы понять и оценить радикальное открытие Эйнштейна, мы должны сначала очень тщательно обдумать две концепции, лежащие в основе теории относительности, – пространство и время.

Представьте, что вы читаете книгу во время полета в самолете. В 12:00 вы взглянули на часы и решили сделать перерыв и прогуляться по салону, чтобы поговорить с другом, сидящим на десять рядов впереди. В 12:15 вы вернулись на место, сели и вновь взяли в руки книгу. Здравый смысл подсказывает, что вы вернулись на то же место: то есть прошли те же десять рядов назад, а когда вернулись, ваша книга находилась там же, где вы ее оставили. А теперь давайте немного задумаемся над концепцией «то же самое место». Поскольку интуитивно понятно, что мы имеем в виду, говоря о некоем месте, все это может восприниматься как чрезмерный педантизм. Мы можем пригласить друга на бокал пива в бар, и бар никуда не переедет к тому времени, когда мы до него дойдем. Он будет на том же месте, где мы его оставили, вполне возможно, накануне вечером. В этой вводной главе многие вещи наверняка покажутся вам излишне педантичными, но все же продолжайте читать. Тщательное обдумывание этих на первый взгляд очевидных концепций проведет нас по стопам Аристотеля, Галилео Галилея, Исаака Ньютона и Эйнштейна. Так как же точно определить, что мы подразумеваем под «тем же самым местом»? Мы уже знаем, как сделать это на поверхности Земли. Земной шар покрыт воображаемыми линиями параллелей и меридианов, так что любое место на его поверхности можно описать двумя числами, представляющими собой координаты. Например, британский город Манчестер расположен в точке с координатами 53 градуса 30 минут северной широты и 2 градуса 15 минут западной долготы. Эти два числа говорят нам о том, где именно находится Манчестер, при условии согласования положения экватора и нулевого меридиана. Следовательно, положение любой точки как на поверхности Земли, так и за ее пределами можно зафиксировать с помощью воображаемой трехмерной сетки, распространяющейся от поверхности Земли вверх. На самом деле такая сетка может проходить и вниз, через центр Земли, и выходить на другой ее стороне. С ее помощью можно описать положение любой точки – на поверхности Земли, под землей или в воздухе. В действительности нам нет необходимости останавливаться на нашей планете. Сетку можно протянуть до Луны, Юпитера, Нептуна, за пределы Млечного Пути, вплоть до самого края наблюдаемой Вселенной. Такая большая, возможно, бесконечно большая сетка позволяет вычислить местоположение любого объекта во Вселенной, что, перефразируя Вуди Аллена, может очень пригодиться тому, кто не в состоянии вспомнить, куда что положил. Стало быть, эта сетка определяет область, где находится все сущее, своего рода гигантскую коробку, содержащую все объекты Вселенной. У нас даже может возникнуть соблазн назвать эту гигантскую область пространством.

Но вернемся к вопросу, что означает «одно и то же место», и к примеру с самолетом. Можно предположить, что в 12:00 и 12:15 вы находились в одной и той же точке пространства. Теперь представим, как выглядит последовательность событий с позиции человека, который наблюдает за самолетом с поверхности Земли. Если самолет пролетает над его головой со скоростью, скажем, около тысячи километров в час, то за период с 12:00 до 12:15 вы переместились, с его точки зрения, на 250 километров. Другими словами, в 12:00 и 12:15 вы находились в разных точках пространства. Так кто же прав? Кто двигался, а кто оставался на одном и том же месте?

Если вы не в состоянии ответить на этот будто бы простой вопрос, то вы оказались в хорошей компании. Аристотель, один из величайших мыслителей Древней Греции, был бы абсолютно неправ, поскольку однозначно бы заявил, что движется пассажир самолета. Аристотель считал, что Земля неподвижна и находится в центре Вселенной, а Солнце, Луна, планеты и звезды вращаются вокруг Земли, будучи закреплены на 55 концентрических прозрачных сферах, вложенных друг в друга, как матрешки. Таким образом, Аристотель разделял наше интуитивное представление о пространстве как некой области, в которой размещены Земля и небесные сферы. Для современного человека картина Вселенной, состоящей из Земли и вращающихся небесных сфер, выглядит совершенно нелепой. Но подумайте сами, к какому выводу вы могли прийти, если бы никто не сказал вам, что Земля вращается вокруг Солнца, а звезды представляют собой не что иное, как очень удаленные солнца, среди которых есть звезды в тысячи раз ярче ближайшей к нам звезды, хотя они и расположены в миллиардах километров от Земли? Безусловно, у нас не было бы ощущения, что Земля дрейфует в невообразимо огромной Вселенной. Наше современное мировоззрение сформировалось ценой больших усилий и зачастую противоречит здравому смыслу. Если бы картина мира, которую мы создавали на протяжении тысячелетий экспериментов и размышлений, была очевидной, то великие умы прошлого (такие как Аристотель) сами бы разгадали эту загадку. Стоит вспомнить об этом, когда какая-либо из описанных в книге концепций покажется вам слишком сложной. Величайшие умы прошлого согласились бы с вами.

Чтобы найти изъян в ответе Аристотеля, давайте на минуту примем его картину мира и посмотрим, к чему это приведет. Согласно Аристотелю, мы должны заполнить пространство линиями воображаемой сетки, связанной с Землей, и определить с ее помощью, кто где находится и кто движется, а кто нет. Если представить себе пространство как заполненный объектами ящик, с Землей, зафиксированной в центре, то будет очевидно, что именно вы, пассажир самолета, меняете свое местоположение в ящике, тогда как наблюдающий за вашим полетом человек стоит не шевелясь на поверхности Земли, неподвижно висящей в пространстве. Другими словами, имеется абсолютное движение, а значит, и абсолютное пространство. Объект пребывает в абсолютном движении, если со временем меняет свое местоположение в пространстве, которое вычисляется с помощью воображаемой сетки, привязанной к центру Земли.

Безусловно, проблема такой картины в том, что Земля не покоится неподвижно в центре Вселенной, а представляет собой вращающийся шар, движущийся по орбите вокруг Солнца. Фактически Земля движется относительно Солнца со скоростью около 107 тысяч километров в час. Если вы ляжете вечером в постель и проспите восемь часов, то к моменту пробуждения переместитесь более чем на 800 тысяч километров. Вы даже вправе заявить, что примерно через 365 дней ваша спальня вновь окажется в той же точке пространства, так как Земля завершит полный оборот вокруг Солнца. Следовательно, вы можете решить лишь немного изменить картину Аристотеля, оставив нетронутым сам дух его учения. Почему бы просто не перенести центр координатной сетки на Солнце? Увы, эта достаточно простая мысль тоже неверна, поскольку Солнце также движется по орбите вокруг центра Млечного Пути. Млечный Путь – это наш локальный остров во Вселенной, состоящий из более чем 200 миллиардов звезд. Только представьте, насколько велика наша Галактика и сколько времени требуется, чтобы ее обойти. Солнце с Землей на буксире двигается по Млечному Пути со скоростью около 782 тысячи километров в час на расстоянии примерно в 250 квадриллионов километров от центра Галактики. При подобной скорости понадобится около 226 миллионов лет, чтобы совершить полный оборот. В таком случае, может, достаточно будет еще одного шага, чтобы сохранить картину мира Аристотеля? Разместим начало сетки в центре Млечного Пути и посмотрим, что же было в вашей спальне, когда место, в котором она находится, пребывало в этой точке пространства в прошлый раз. А в прошлый раз на этом месте динозавр ранним утром поглощал листья доисторических деревьев. Но и эта картина ошибочна. В действительности галактики «разбегаются», удаляясь друг от друга, и чем дальше от нас расположена галактика, тем быстрее она удаляется. Наше движение среди мириады галактик, образующих Вселенную, представить себе крайне трудно.

Так что в картине мира Аристотеля наблюдается явная проблема, поскольку она не позволяет точно определить, что значит «оставаться в неподвижности». Другими словами, невозможно рассчитать, где нужно разместить центр воображаемой координатной сетки, а стало быть, и решить, что находится в движении, а что стоит на месте. Самому Аристотелю не приходилось сталкиваться с данной проблемой, потому что его картина неподвижной Земли, окруженной вращающимися сферами, не оспаривалась почти две тысячи лет. Наверное, это следовало сделать, но, как мы уже говорили, подобные вещи не всегда очевидны даже для величайших умов. Клавдий Птолемей, которого мы знаем как просто Птолемея, работал во II столетии в великой Александрийской библиотеке и внимательно изучал ночное небо. Ученого беспокоило на первый взгляд необычное движение пяти известных на то время планет, или «блуждающих звезд» (название, от которого произошло слово «планета»). Многомесячные наблюдения с Земли показывали, что планеты не движутся на фоне звезд по ровному пути, а выписывают странные петли. Это необычное движение, обозначаемое термином «ретроградное», было известно за много тысячелетий до Птолемея. Древние египтяне описывали Марс как планету, которая «движется назад». Птолемей был согласен с Аристотелем в том, что планеты вращаются вокруг неподвижной Земли, но, чтобы объяснить ретроградное движение, ему пришлось прикрепить планеты к эксцентричным вращающимся колесам, которые, в свою очередь, были прикреплены к вращающимся сферам. Такая весьма сложная, но далеко не элегантная модель позволяла объяснить движение планет по небу. Истинного объяснения ретроградного движения пришлось ждать до середины XVI века, когда Николай Коперник предложил более изящную (и более точную) версию, заключавшуюся в том, что Земля не покоится в центре Вселенной, а вращается вокруг Солнца вместе с остальными планетами. У работы Коперника нашлись серьезные противники, поэтому она была запрещена католической церковью, и запрет был снят только в 1835 году. Точные измерения Тихо Браге и работы Иоганна Кеплера, Галилео Галилея и Исаака Ньютона не только полностью подтвердили правоту Коперника, но и привели к созданию теории движения планет в виде законов Ньютона о движении и гравитации. Эти законы представляли собой лучшее описание движения «блуждающих звезд» и вообще всех объектов (от вращающихся галактик до артиллерийских снарядов) под воздействием гравитации. Такую картину мира не ставили под сомнение до 1915 года, когда была сформулирована общая теория относительности Эйнштейна.

Постоянно меняющееся представление о положении Земли, планет и их движении по небу должно послужить уроком для тех, кто абсолютно убежден в каком-то своем знании. Есть много теорий об окружающем мире, которые на первый взгляд кажутся самоочевидной истиной, и одна из них – о нашей неподвижности. Будущие наблюдения могут нас удивить и озадачить, что во многих случаях и происходит. Хотя мы не должны болезненно реагировать на то, что природа часто вступает в противоречие с интуитивными представлениями племени наблюдательных потомков приматов, представляющих собой углеродную форму жизни на небольшой каменной планете, вращающейся вокруг ничем не примечательной немолодой звезды на задворках Млечного Пути. Теории пространства и времени, которые мы обсуждаем в этой книге, на самом деле могут оказаться (и, скорее всего, окажутся) не более чем частными случаями пока еще не сформулированной более глубокой теории. Наука приветствует неопределенность и признает, что это ключ к новым открытиям.

Галилео Галилей, родившийся через 20 лет после того, как Коперник предложил свою гелиоцентрическую модель Вселенной, глубоко задумывался о смысле движения. По всей вероятности, его интуитивные представления не отличались от наших: хотя Земля кажется статичной, движение планет в небе – очень серьезный довод против этого. В момент великого озарения Галилей сделал чрезвычайно важный вывод из этого парадокса. Мы считаем, что неподвижны, хотя на самом деле движемся по орбите вокруг Солнца, поскольку не существует никакого способа даже теоретически решить, что именно находится в состоянии покоя, а что движется. Иными словами, имеет смысл говорить только о движении относительно чего-то еще. Это крайне важная концепция, но для того чтобы оценить ее в полной мере, необходимо немного поразмышлять. Она кажется очевидной, потому что, когда вы сидите с книгой в самолете, книга неподвижна относительно вас. Если вы положите ее на столик перед собой, расстояние между вами и нею меняться не будет. И конечно, с точки зрения человека на земле книга движется по воздуху вместе с самолетом. Истинный смысл озарения Галилея в том, что эти утверждения – все, что мы можем сказать. А если все, что мы можем сказать о книге, – это то, как она движется относительно вас, когда вы сидите в кресле самолета, или относительно земной поверхности, или относительно Солнца или Млечного Пути (всегда относительно чего-то другого), то абсолютное движение становится бесполезной концепцией.

Это довольно провокационное утверждение звучит достаточно поверхностно, как часто бывает с изречениями в стиле дзен, которые произносят предсказатели. Однако в данном случае речь идет о действительно великом озарении – Галилей достоин своей репутации. Чтобы понять, почему, давайте попытаемся определить, полезна ли с научной точки зрения сетка координат Аристотеля, которая позволила бы нам судить, находится что-либо в абсолютном покое или в абсолютном движении. Польза с научной точки зрения означает, что идея имеет наблюдаемые последствия, другими словами, что присутствует некий эффект, который может быть выявлен путем эксперимента. Под экспериментом мы подразумеваем любые измерения: качания маятника, цвета пламени свечи или столкновения субатомных частиц в БАК (мы еще вернемся к этой теме). Если у идеи нет наблюдаемых последствий, то она не нужна для понимания устройства Вселенной, хотя и может иметь некую призрачную ценность.

Это очень эффективный способ отделить зерна от плевел в мире, изобилующем разнообразными идеями и мнениями. Посредством аналогии с фарфоровым чайником философ Бертран Рассел[3] проиллюстрировал бесполезность концепций, не имеющих наблюдаемых последствий. Рассел заявил, что, по его мнению, между Землей и Марсом по орбите летает маленький фарфоровый чайник, который настолько крохотный, что его не могут обнаружить даже самые мощные из существующих телескопов. Если же будет построен телескоп побольше и после исчерпывающего (и требующего массы времени) изучения всего неба он тоже не найдет никаких доказательств существования такого чайника, Рассел заявит, что чайник немного меньше, чем ожидалось, но все еще находится там. Хотя чайник может так и остаться необнаруженным, по мнению Рассела, со стороны рода человеческого было бы неприемлемо сомневаться в его существовании.

На самом деле человечество должно уважать позицию Рассела, какой бы абсурдной она ни казалась. Он не пытался защитить свое право на личные заблуждения, а имел в виду, что построение теории, которая не может быть ни доказана, ни опровергнута посредством наблюдений, бесполезно в том смысле, что ничему нас не учит, как бы страстно мы в нее ни верили. Вы можете придумать какой угодно объект или идею, но, если нет способа изучить их или их последствия путем наблюдения, вы не сделаете никакого вклада в научное понимание Вселенной. Аналогичным образом идея абсолютного движения будет что-то значить в научном контексте, только если мы сможем провести эксперимент, обнаруживающий такое движение. Например, мы могли бы создать физическую лабораторию в самолете и проводить высокоточные измерения всех мыслимых физических явлений в последней доблестной попытке обнаружить свое движение. Мы могли бы измерять период качания маятника, проводить электрические эксперименты с батареями, электрическими генераторами и двигателями, наблюдать протекание ядерных реакций и измерять полученное в результате излучение. В принципе, имея в своем распоряжении достаточно большой самолет, мы могли бы повторить любой физический эксперимент, когда-либо проводившийся в истории человечества. Вот ключевой момент, который лежит в основе этой книги и представляет собой один из краеугольных камней современной физики: если такой самолет не ускоряется и не замедляется, то ни один из экспериментов не покажет, что мы находимся в движении. Даже взгляд в окно ничего нам не скажет, потому что совершенно корректным утверждением может быть то, что это земля летит под нами со скоростью тысяча километров в час, а мы по-прежнему неподвижны. Лучшее, что можно сделать, – сказать, что мы неподвижны относительно самолета или движемся по отношению к поверхности Земли. В этом и состоит принцип относительности Галилея: не существует такого понятия, как абсолютное движение, потому что оно не может быть выявлено экспериментально. Скорее всего, это не будет таким уж потрясением, поскольку на самом деле мы уже знаем это на интуитивном уровне. Хорошим примером будет ситуация, когда мы сидим в неподвижном поезде, а состав на соседнем пути начинает медленно двигаться: на какую-то долю секунды у нас возникает ощущение, что движение начали мы. Нам очень трудно обнаружить абсолютное движение, потому что его попросту не существует.

Все это может показаться просто философскими размышлениями, но на самом деле они ведут к глубоким выводам о природе самого пространства и позволяют сделать первый шаг на пути к теории относительности Эйнштейна. Так какой же вывод о пространстве можно извлечь из рассуждений Галилея? А вывод такой: если обнаружить абсолютное движение невозможно в принципе, значит, концепция некой особой координатной сетки, которая определяет понятие «находиться в состоянии покоя», бессмысленна, соответственно, и концепция абсолютного пространства также не имеет смысла.

Это важно, поэтому давайте обсудим все более подробно. Мы уже установили, что в случае принятия специальной аристотелевской сетки координат, охватывающей всю Вселенную, движение относительно этой сетки можно было бы определить как абсолютное. Мы также утверждаем, что, поскольку провести эксперимент, который позволил бы нам определить, находимся мы в движении или нет, невозможно, мы должны отбросить идею такой сетки – просто потому, что никогда не сможем выяснить, к чему она должна быть привязана. Но как же тогда вычислить абсолютное положение объекта? Иными словами, где наше место во Вселенной? Без концепции сетки координат Аристотеля эти вопросы не имеют научного смысла. Все, о чем мы можем говорить, – это позиции объектов относительно друг друга. Таким образом, способа определить абсолютное положение в пространстве не существует, а значит, и само понятие абсолютного пространства не имеет смысла. Представление о Вселенной как о гигантском ящике, в котором движутся различные объекты, не предполагает экспериментального подтверждения. Переоценить важность этих рассуждений невозможно. Великий физик Ричард Фейнман[4] однажды заметил, что независимо от того, насколько красива ваша теория и насколько вы умны или известны, если она не согласуется с экспериментом, она неверна. Это утверждение – ключевое в науке. Если взглянуть на него с другой стороны, то можно сказать, что если некая концепция не поддается проверке экспериментальным путем, что не позволяет убедиться в ее достоверности, то такая концепция в любом случае лишена значимости. Конечно, это не мешает нам стоять на своем и продолжать продвигать свою идею, но опасность такого предположения заключается в том, что мы рискуем воспрепятствовать будущему развитию науки, придерживаясь предвзятого мнения. Следовательно, из-за отсутствия каких-либо возможных средств определения специальной координатной сетки мы освобождаемся от понятия абсолютного пространства, подобно тому как избавились от концепции абсолютного движения. Что же дальше? Освобождение от оков абсолютного пространства сыграло решающую роль в разработке Эйнштейном теории пространства и времени, но это подождет до следующей главы. Пока же мы просто получили свободу, но еще не воспользовались ею. Чтобы подогреть интерес, давайте лишь укажем, что при отсутствии абсолютного пространства нет никаких причин, почему два наблюдателя должны обязательно видеть одинаковый размер объекта. Что вас действительно поразит, так это то, что диаметр мячика четыре сантиметра без абсолютного пространства может таким и не быть.

Пока что мы рассматривали некоторые детали взаимосвязи между движением и пространством. А что можно сказать о времени? Движение выражается как скорость, а скорость может быть измерена в километрах в час, то есть как расстояние, пройденное в пространстве за определенный промежуток времени. Таким образом, понятие времени уже фактически вошло в наши рассуждения. Что же мы можем сказать о времени? Есть ли какой-то эксперимент, который мог бы доказать, что время абсолютно, или мы должны отбросить и эту, еще более глубоко укоренившуюся концепцию? Хотя Галилей отверг понятие абсолютного пространства, в его рассуждениях нет ничего, что объяснило бы нам концепцию абсолютного времени. Согласно Галилею, время неизменно. То есть мы можем представить себе маленькие идеальные часы, синхронизированные таким образом, чтобы показывать одно и то же время в любой точке Вселенной. Одни часы могут быть на самолете, другие на Земле, третьи (очень прочные) на поверхности Солнца, еще одни – на орбите вокруг далекой галактики. При условии, что эти часы – идеальные приборы для измерения времени, они показывают одно и то же время – ныне и вовеки веков. Удивительно, но это на первый взгляд очевидное предположение вступает в прямое противоречие с утверждением Галилея о том, что эксперимент не может нам сказать, находимся ли мы в состоянии абсолютного движения. Каким бы невероятным это ни казалось, экспериментальные доказательства, окончательно уничтожившие понятие абсолютного времени, получены в ходе экспериментов, которые многие из нас помнят по школьному курсу физики: батарейки, провода, двигатели и генераторы. Чтобы разобраться в понятии абсолютного времени, нам придется вернуться в XIX столетие, золотой век открытия электричества и магнетизма.

2

Имеется в виду Базз Олдрин (Buzz Aldrin), пилот лунного модуля «Аполлон-11». Прим. перев.

3

Бертран Артур Уильям Рассел (Bertrand Arthur William Russell, 1872–1970) – британский философ, общественный деятель и математик. Лауреат Нобелевской премии по литературе 1950 года. Прим. ред.

4

Ричард Филлипс Фейнман (Файнман) (Richard Phillips Feynman, 1918–1988) – выдающийся американский физик-теоретик, лауреат Нобелевской премии по физике (1965, совместно с С. Томонагой и Дж. Швингером). Прим. ред.

Почему Е=mc²? И почему это должно нас волновать

Подняться наверх