Читать книгу Prairie - Candace Savage - Страница 7
ОглавлениеCHAPTER 3
THE GEOGRAPHY OF GRASS
I am the grass. Let me work.
CARL SANDBURG, “GRASS,” 1918
GRASSES ARE THE heart and soul of the prairie, the living link between the physical resources of the Great Plains—sunshine, rain, and soil—and almost every other aspect of the ecosystem. At first glance, grasses may look simple or even primitive. In fact, they are highly evolved organisms, especially adapted to cope with extreme climatic uncertainties, including frequent drought. From probable origins in the African region of the supercontinent Pangaea some 60 million years ago, grasses have migrated to every continent except Antarctica and have diversified into about 10,000 species throughout the world. Of these, approximately 140 species, in 41 genera, naturally occur in the Great Plains Grasslands. That’s nearly twelve dozen distinctly different native grasses! Some of them, like the magnificent big bluestem, or turkey foot (so called for its large, three-lobed seed head), grow up to 10 feet (3 meters) tall. Others, like the stick-in-your-socks specialist needle-and-thread grass, seldom exceed 3 feet (a meter) in height. At the low end of the scale are species like the diminutive blue grama, which grows close to the ground and rarely raises its elegant, eyebrow-shaped seed heads more than a few hand widths above the soil.
Yet despite these obvious differences, the prairie grasses all share one crucial ability. They are tuned in to the climate, able to dial their metabolisms down when conditions are unfavorable for growth and speed them up when the weather improves. Far from being passive stalks blowing idly in the wind, prairie grasses are lean, mean growing machines, designed to make the most of limited and unreliable resources.
MANAGING MOISTURE
ONE KEY TO the prairie grasses’ success is their ability to conserve water. Like most plants, grasses take in water through their roots and lose it as water vapor through tiny mouth-shaped valves, or stomata, in their leaves. The larger the surface of the leaf and the more stomata it bears, the greater the risk that the plant will lose too much moisture through evaporation, causing it to collapse. Grasses are protected from this trauma by having a reduced number of stomata and by the design of their leaves, which take the form of narrow blades. What’s more, the surfaces of these reduced leaves are often modified—corrugated with ridges or covered in hairs—so that the wind can’t sweep across the surface and draw out moisture. The roughened surface holds a thin layer of humid air next to the leaf and thus helps to reduce the “evaporative demand,” or drying power, of the atmosphere. Some grasses, including western wheatgrass, June grass, and blue grama, roll up the edges of their leaves during times of drought to help keep their tissues from drying out.
Why aren’t the stomata kept tightly closed to seal moisture inside the leaf? The reason is that the stomata also supply plants with fresh air. Leaves are miracle workers, able to take carbon dioxide from the air and water from the soil, zap them with solar energy, and transform them into food. This process—photosynthesis—not only produces the sugars and other organic molecules that plants need to maintain themselves and to grow but also feeds microbes, worms, insects, fish, birds, and mammals. If plants sealed their stomata, this life-sustaining process would come gasping to a halt for lack of carbon dioxide. But if the stomata are thrown wide open, the plants risk death due to the loss of moisture through their gaping valves.
Prairie grasses resolve this dilemma by strategic scheduling. In the fierce blaze of the midday sun, the stomata close so that water vapor is held in and carbon dioxide is kept out. In this state, the leaf can capture solar energy and store it in energy-rich molecules (a process that requires sunlight but not carbon dioxide). Then, in the cool of the evening, when the evaporative demand drops off, the stomata snap open, letting water vapor trickle out but also permitting carbon dioxide to flood into the leaf. By mobilizing the energy that was stockpiled earlier in the day, the leaf uses this carbon dioxide to manufacture the sugars and other molecules that it needs for growth (a process that can be accomplished in total darkness). The result is that prairie grasses are partially nocturnal; they do most of their growing at night or in the early hours of the morning.
Prairie grasses also have another ingenious way of evading the demands of the sun. Like many other grassland creatures (prairie dogs, ground squirrels, cottontails, badgers, and so on), they take refuge underground. What we think of as “grass”—the aboveground leaves and stems—actually constitutes less than half of the organism. Between 60 and 80 percent of the plant, by weight, typically grows below ground. The roots extend down from the base of the stems like a tangled head of hair, as main roots divide into minor roots and then into root hairs. A 10-foot (3-meter) stand of big bluestem is anchored underground by a mass of coarse, fibrous roots that reaches as much as 12 feet (3.6 meters) into the earth. Blue grama, for its part, seldom lifts its seed heads very far above the ground, but its network of fine, branching roots can sometimes probe the soil for water to a depth of almost 6 feet (1.8 meters)!
These extensive systems of roots push thirstily through the soil, intent on sucking up every available drop of water. But if the soil is very dry, as it is during periods of drought, the roots can’t draw in enough moisture to keep pace with losses from the stomata. Grasses respond by transferring their most valuable resources (including sugars and proteins) from their leaves into their roots and, especially, into their rhizomes—those aggressive, underground stems that are familiar to anyone who has ever battled with quack grass in the garden. Dead to the world above ground—withered and crisp—the plants live frugally below the surface, drawing on their cached supplies and biding their time until the weather improves. When the rains eventually return, as inevitably they do, the grasses explode into action, sending out fresh rhizomes, which in turn put out fresh leaves and roots, to produce a burgeoning network of tender growth. The amazingly resilient blue grama can revive from dormancy, green up, and grow on as little as 0.2 inches, or 5 millimeters, of rainfall.
Indian grass
Needle-and-thread grass
Galleta
Western wheatgrass
YOU CALL THAT A DROUGHT?
The Great Plains Grasslands, and the climate that defines them, have been around for the last eight thousand to ten thousand years. In the early days of this regime, the climate was considerably warmer and drier than it is today and even more prone to drought. But sometime in the last few thousand years, the system took a turn toward cooler, moister norms, so droughts have gradually become less frequent.
In fact, it seems that the twentieth century was the wettest in two thousand years. This conclusion is based on studies of microscopic fossils found in lake beds across the northern plains, in Alberta, Saskatchewan, and North Dakota. By extracting core samples from lake bottoms and studying the fossils that are found at different depths, researchers are able to estimate the salt content of the water at different times in the past. Since salinity increases as water levels drop, these findings give them a measure of past droughts. At Humboldt Lake in central Saskatchewan, for example, the fossils bear witness to a severe drought that persisted unbroken for more than seventy years. On the southern plains and in the desert United States, researchers have uncovered evidence of prehistoric droughts that lasted for three centuries.
Could the prairie climate revert to its fierce old habits? Yes, and it may already be happening. In 2017, for example, Amarillo, Texas, went 126 days without measurable precipitation, far surpassing a long-standing record. To make matters worse, average annual temperatures are on the rise—already up by 3.4°F (1.9°C) in some localities over the last hundred-plus years—as the prairies ride the leading edge of global warming.
Prairie grasses are not all equally capable of coping with drought. In general, tall grasses, including big bluestem and other shoulder-high species such as switchgrass and Indian grass, require the most moisture, while short grasses like blue grama, galleta, and the stubby little buffalo grass are the most resistant to drought. Midheight species, including needle-and-thread grass, rough fescue, and western wheat-grass (a.k.a. bluejoint, for its bluish leaf nodes), tend to fall somewhere in between. But all prairie grasses can contend with drought more successfully than can most deciduous trees—which is why the prairies are prairies instead of forests. The grasslands are an expression of the drought-prone prairie climate and a living response to the geography of the midcontinent.
WEATHER MATTERS
TO THE HOMESTEADERS who came to the Great Plains from Europe or eastern North America in the late 1800s and early 1900s, converting the prairies to cropland must have looked like a dream. Except for the trees that crept in along the rivers, the land lay open to the plow, offering little apparent resistance to the farmers’ ambitions. But the settlers’ early optimism was soon blighted by widespread droughts, as the dry summer of 1889 was followed by the dry years of 1890, 1894, 1910, and 1917, and then by the bleak decade of the 1930s. Life on the prairies was not as easy as it had seemed. For what no one at first quite realized was that grasslands are semiarid zones—better watered than deserts but less humid than forests. The farmlands that the settlers had known in Europe and the East had typically been wrested from the forest and, even after the trees were gone, still received enough rainfall to support a natural vegetative cover of broad-leaved woodlands. But the weather on the prairies naturally favored not trees but grass, and that simple fact made all the difference.
Like most of the world’s great grasslands, the Great Plains of North America lie squarely in the middle of a large continental landmass. As a result, the region is isolated from the influence of all four oceans—north, south, east, and west—and, as it happens, from any other significant body of water. Without the moderating influence of water (slow to heat and slow to cool), the plains are subject to violent oscillations of temperature. In the northern prairies, in particular, the temperature can span 140°F in the course of a year, from a brittle –40°F in midwinter to a stifling +100°F in summer. (That’s a range of 80°C, from a low of around –40°C to a high of over +40°C.) The effect of these wild seasonal deviations is equivalent to moving up and down the continent every twelve months. Saskatoon, for example, has an average January temperature of 0°F (–18°C), well below that of Anchorage, Alaska. But in July, Saskatoon’s average heats up to 66°F (19°C), almost on a par with Los Angeles. And though the southern plains are spared the worst extremes of winter, they still get taken for quite a ride. The average January temperature in Amarillo, Texas, for example, is a mere 35°F, or 2°C, cooler than Vancouver far to the north; but in July, the north Texas plains can be among the hottest places on the continent. (If prairie people are obsessed by the weather, it may simply be because we have a lot of weather to obsess about!)
Prairie grasses ride this climatic roller coaster with composure. Species that couldn’t stay the course fell into extinction in ages long past, leaving the modern community of hardy survivors. Each of these successful species has been further refined over the past several thousand years, producing subspecies, or varieties, that are finely attuned to local conditions. A native grass from Alberta, for example, typically achieves maturity in a matter of weeks, fitting its life cycle to the abbreviated growing season of the northern plains. But a clump of the same species from Missouri or Oklahoma is programmed to take its time, pacing its activities to the more leisurely schedule of southern climes. These kinds of local, genetic differences have been detected in a wide range of native grasses, including blue grama, its cousin sideoats grama, the compact and graceful June grass, switch-grass, and both big and little bluestem. Natural selection, that master gardener, has been at work on them.
The one climatic factor that presents a continuing challenge for prairie grasses is the moisture supply. Over the Great Plains as a whole, precipitation is more variable than it is almost anywhere else on the continent, with years that are both much wetter and much drier than the long-term norm. (One study of precipitation records in western Kansas, for example, showed that in most months the amount of moisture received was either significantly below or significantly above average. Only “normal” values were truly abnormal.) When the rains are generous, the prairie flourishes and blooms; but when drought sets in, the grasses—indeed the whole ecosystem—are severely tested. More than any other single factor, the limits to growth on the prairies are set by precipitation.
PLANTS FIGHT BACK
PRAIRIE PLANTS HAVE come up with many ingenious strategies for coping with water shortage. A few, like the pincushion cactus, are genuinely drought resistant. In other words, they can store water in their own tissues (in their enlarged stems) and draw on it as needed. Others, including many grasses and wildflowers, attempt to evade drought by going dormant and retreating underground, where they linger on in the form of seeds, rhizomes, or tubers. But if some plants favor patient waiting, others put their faith in speed. Instead of trying to sit out the drought, they attempt to avoid it entirely.
Take, for example, the prairie crocus, or pasque flower. An inexhaustible source of pleasure for people on the northern plains, crocuses appear on the trailing edge of winter as tight clusters of furry, pointed buds that push up through the dead grass like so many inquisitive snouts sniffing for spring air. Without pausing to grow leaves, the plants burst directly into bloom, producing ground-hugging whorls of silky, lavender sepals. By the time most other wildflowers put in an appearance several weeks later, crocuses are already sporting headdresses of shiny, plumed seeds. Before the growing season has even properly begun, their reproductive task has been completed.
By getting off the mark so early, crocuses are able to draw on a relatively certain supply of water from snowmelt. And although they are exposed to the bluster of winter’s last blast, they are protected from the wind by a coat of hairs that holds in heat and moisture. They also take shelter by crouching close to the ground, well bedded in grass, creeping juniper, and other plants. Thus protected, crocuses speed through their reproductive cycle and avoid the stress of coping with drought in the hot, dry days of July and August.
WHY SO DRY?
THE GREAT PLAINS are subject to drought partly because they lie in the lee of the western mountains. Without this elevated barrier, westerly winds from the Pacific could sweep across the plains and bring moisture to the dry lands from Airdrie to Abilene. But with the Coast Ranges, the Cascades, the Sierras, and the Rockies all standing in their path, the Pacific westerlies are forced to rise, cool, and drop their moisture as they pass. By the time the winds flow down over the plains, they are almost devoid of rain. As they move across the western grasslands, they pick up humidity and carry it to the well-watered eastern forests. (Sometimes, as the winds swoop over the mountains, they whip themselves up into disturbances—known as Alberta Lows or Colorado Cyclones, depending on where they occur—that sweep across the plains, carrying a splattering of rain or a dusting of snow.)
Once the westerlies get past the mountains, there is nothing to stop them—except for the invisible resistance of other air masses. The prairies’ open spaces are a playground for the winds, drawing in not only mild, dry air from the Pacific but also colder and even drier air from the tundra and polar seas. As this Arctic air floods south, it meets moist, tropical air flowing north from the western Gulf of Mexico. A typical weather diagram for the Great Plains would show Arctic air pushing down from the north, tropical air swinging in from the south, and wrung-out Pacific air wedged between them like the point of an eastward-facing arrow. Arctic air dominates in the winter, sometimes forcing itself all the way to Texas as a stinging “blue norther” and, occasionally, pushing on south to the isthmus of Tehuantepec at the very tip of Mexico. In the spring, the balance of power is reversed, as the gulf air mass gains strength and surges north, sometimes carrying tropical heat and humidity all the way up to the Canadian prairies. The rained-out Pacific westerlies, with their meager stock of moisture, make themselves felt throughout the year, especially during the dry months of fall and winter. See Map 5: Major Air Masses Affecting the Great Plains.
In spring and summer, in particular, this picture is complicated by an influx of warm, dry-as-bone air that blows across the southern plains from the southwestern deserts. The interplay of these “four strong winds” produces the distinctive precipitation patterns of the Great Plains Grasslands. For instance, winter is a relatively arid season across most of the plains not only because cold air cannot hold much moisture but also because of the strong seasonal influence of dry air from the north and west. As a rule, less than one-third of the year’s precipitation falls between October and March, when these air masses exert their strongest influence. The other roughly 70 percent of the year’s moisture is received during the April-to-September growing season. Without this well-timed gift, the Great Plains would be a prickly expanse of cactus and other desert plants.
Much of the all-important spring-and-summer rainfall is generated when tropical air surges north and runs into Pacific and Arctic systems moving across the prairies to the east and south. Where the air masses collide, the lighter, warmer air from the tropics is forced up, cooling as it climbs, condensing to form clouds, and ultimately losing its moisture as general rain showers. Violent thunderstorms also frequently develop along these collision zones, or fronts, as the unstable tropical air rises up into towering, super-energized cumulonimbus clouds that glower over the landscape before releasing their humidity as hail or pounding downpours.
Because the contending air masses often meet in mid-continent, frontal thunderstorms are most common in the middle of the plains, in and around Colorado, Wyoming, South Dakota, Nebraska, and Kansas. But storms can also develop locally, without the clash of opposing weather systems to set them off. All it takes is a mass of warm, moist air and something to send that air spiraling up through the atmosphere. This lift-energy usually comes from the summer sun, which blazes down through cloudless prairie skies to heat the ground. Heat then radiates out of the soil into the surface air, causing it to rise, rotate, and mount upward to form a rain-filled thunderhead. In the dry western plains, one-third of the year’s precipitation can fall in a single hour from one of these spectacular cloudbursts.
GLOBAL “TELECONNECTIONS”
BY AND LARGE, the prairie climate is reliably unreliable. As the rival air masses interact with each other over the plains, they keep the atmosphere in a state of more-or-less-constant flux, so that the weather oscillates from extreme to extreme. But there are also times when the climatic system seems to get stuck. “Wet spells,” for example, when the rain refuses to stop. “Dry spells” of months—or years—when the clouds seem dry as parchment and the air fills with dust.
These persistent weather patterns also tend to be widespread, affecting significant parts of the Great Plains for prolonged periods. The droughts of the 1930s, for example, occasionally flared out to singe the entire continent, but they were at their most intense across the Great Plains Grasslands. Some parts of the High Plains in Oklahoma and Texas experienced eight consecutive years of drought, between 1933 and 1940. Little more than a decade later, the central and southern plains—from the Mississippi to the Rockies and from Colorado to Texas—were again stricken by a severe drought that persisted from 1952 to 1957. The Canadian Prairie provinces were hit hard in 1961. Then, in the late 1980s, a three-year drought parched the entire northern plains and fueled disastrous forest fires in Yellowstone National Park. During the growing season of 1988, when the crisis was at its worst, many parts of the prairies were hotter and drier than they had been at any time during the Dirty Thirties.
Yet five years later, some of these same areas were in full flood, as torrential rains pounded the western Midwest and sent both the Missouri and the Upper Mississippi rivers spilling over their banks. By the time the waters receded, twenty-six people were dead.
Why do the prairies suffer these violent climatic spasms? Part of the answer to this question may lie halfway around the world, in a region somewhere between Australia and Peru. There, in the equatorial waters of the South Pacific Ocean, weather patterns that will eventually affect the prairies begin to brew. Recent research suggests that there is a link between the surface temperature of the South Pacific and the amount of precipitation that ultimately falls on the Great Plains, particularly during the winter and early spring.
So far, no one knows exactly how all the complex linkages in this world-wide “teleconnection” work. And global influences, however stupendous, are not the only factors involved. Often, extreme conditions linger on the Great Plains long after the systems that triggered them have dispersed. A wet spell seems to breed more wet weather; a dry spell appears to breed more drought. But how could weather patterns possibly perpetuate themselves? The answer turns out to be surprisingly obvious. When precipitation is plentiful, water accumulates in the soil. As plants draw on this moisture to grow, they release water vapor into the air. This water vapor, in turn, combines with humidity that has evaporated directly from the earth, and these exhalations rise together to form clouds. Thus rain in the soil begets rain showers. What’s more, both rainfall and evapotranspiration (the release of water vapor from plants) have a cooling influence that helps to moderate temperatures and keep the evaporative demand within comfortable limits.
After a prolonged dry spell, by contrast, the cycle grinds to a stop. Plant growth slows and the rate of transpiration declines. So too does cooling evaporation from the soil. The ground and the surface layers of air sizzle in the sun, as a hot, dry land gets hotter and drier. (A case in point is the drought of the 1930s, which seems to have been intensified and prolonged by farming methods that left the soil exposed to the parching wind and robbed the system of what little moisture it held.) Eventually humid air from the south or the west returns to the scene, bringing welcome relief and restoring the climate to its own eccentric sense of normalcy.
GRADIENTS OF GRASS
THESE PROLONGED EPISODES of drought have been the making of the Great Plains Grasslands. Drought sucks moisture out of the soil, beginning at the surface and gradually burning farther down. If the dry spell is brief, the deep stores of moisture remain untapped, but if the evaporative demand persists, even the subsoil becomes parched and cracked. As a result, deeply rooted trees can cope without rain for several years by drawing water from underground, but they are doomed to defeat when drought reaches their root zone. Meanwhile, the grass lies patiently around the dying trunks, ready and able to spring back to life when the new rains finally come.
Long-term patterns of precipitation not only determine whether the land will grow trees or grass but also establish the limits that distinguish one “type,” or ecoregion, of grasslands from the next. When precipitation and other variables are averaged over the long term, the underlying order of the prairie climate begins to emerge. In the textbooks, these hidden patterns are revealed through charts and maps, but out on the prairie, they are written as gradients of grass. See Map 6: Average Annual Precipitation on the Great Plains.
Sometimes, the dialogue between the vegetation and the climate is intriguingly complex. For instance, summer precipitation on the prairies depends, in large part, on air masses that blow in from the south, carrying moisture from the gulf. Because of their southerly origins, these winds naturally have a greater influence on the southern plains (where they “reside”) than in the north (where they merely “visit”). So it isn’t entirely surprising to discover that the southern plains receive significantly more moisture than the northern prairies do. If, for example, Amarillo can hope to get 20 inches, or 500 millimeters, of moisture in a normal year, Lethbridge typically has to make do with only three-quarters as much. With this difference in mind, one might expect the prairies of northern Texas to be lusher than those of southern Alberta or Saskatchewan. Instead, the reverse is the case.
PRAIRIE FIRE
Climate is the major factor that determines the extent of the Great Plains Grasslands. Technically speaking, grasses hold sway when the evaporative demand (the amount of moisture that the atmosphere would draw away if it could) is slightly greater than the precipitation (the amount of moisture that is out there, in the ecosystem). But there is one important exception to this rule. The lush tall-grass prairies that fringe the eastern margin of the plains receive abundant moisture, more than enough to keep pace with evaporation. Theoretically, the region ought to support trees. And, in fact, wherever fragments of tall-grass prairie have survived, they have been aggressively invaded by stands of aspen, oak, and dogwood during the last 150 years.
The missing link is fire. Prairie fire was the terror of the early settlers, but it was a friend and ally of the tall grasses. Not only did it clear away the thatch of dead vegetation that prevented new shoots from breaking through, it also killed trees, the true “terror” of the prairies. When a tree burns, the growth points on its twigs and branches are often injured, so the plant cannot easily produce new shoots. But a grass protects its growing tips under the ground and rises from the flames like the proverbial phoenix.
Before the agricultural era, most of the tall-grass region probably burned every three to ten years, set ablaze by lightning or by Indigenous people, who used fire to green up the prairie and bring in animals. But however the flames were ignited, they had the same effect: they renewed and sustained the tall-grass prairies.
The trick is that the south-to-north gradient in precipitation is canceled out by an equal but opposite north-to-south gradient in evaporation. Because the average annual temperature increases from north to south, so does the rate at which moisture is lost through evaporation. Whatever the southern plains gain as rain, they lose as water vapor. As a result, the “effective precipitation”—the amount of water that is available to growing plants—is about the same in southern Alberta as in northern Texas. This helps to explain the long, gradual transition from the semiarid climate of the Northwestern Short/Mixed Grasslands to the sun-frazzled conditions of the Southern Short Grasslands. (As climate change imposes hotter, drier conditions on the southern plains, this gradient is expected to become even more dramatic.) See Map 4: Ecoregions of the Great Plains.
Meanwhile, there is yet another climatic gradient that helps to shape the vegetational profile of the Great Plains. This is an east-to-west decline in average annual precipitation. The tropical air that brings summer rains to the prairies typically swings up from the Gulf of Mexico, through the central United States, and off toward the east. As a result, its influence is stronger on the tall grasslands of the eastern plains than on the short-to-mixed grasslands farther west. If Winnipeg receives about 20 inches (500 millimeters) of moisture on average, Lethbridge gets 20 percent less (just 16 inches, or 400 millimeters). And if Kansas City can count on 40 inches (1,000 millimeters) of precipitation in a normal year, Amarillo can only expect to receive about half as much—and this time there is no reverse gradient in temperature to compensate for the difference. Less moisture is simply less.
In the days before the prairies were plowed and settled, this east-west moisture gradient found expression in the natural vegetation. As the average precipitation declined toward the west, the vegetation diminished in step, gradually reducing in height like a living bar graph. Somewhere around 100 degrees west longitude (give or take a few degrees), the tall-grass species dwindled away, leaving the wind to ripple through knee-high stands of mixed-grass prairie. To the west and southwest, the midheight grasses in turn gave way to a carpet of ground-hugging grasses, as a dry land clothed itself in drought-resistant plants.
The boundaries between tall-, mixed-, and short-grass prairies are not as tidy as they look on the map. In the patchwork quilt of the grasslands, each of the major blocks of vegetation is composed of many smaller blocks. And just as the overall picture is determined by large-scale climatic patterns, so each of these distinctive patches is a response to local variations in microclimate. Conditions are different on a south-facing slope than on the north and on lowlands than on hilltops, and these subtle differences are reflected in the vegetation. Moving uphill, from humid bottomlands to the drier crest, reproduces the moisture gradient of moving from east to west. And so, a sea of tall-grass prairie is broken by islands of mixed (or even short) grasses that grow on uplands and arid slopes. Meanwhile, out on the short-grass prairie, blue grama and its diminutive associates follow the opposite trend, ceding ground to midheight or tall grasses in moist valley bottoms.