Читать книгу Common Science - Carleton Washburne - Страница 50

Inference Exercise

Оглавление

Explain the following:

71. When you turn on the faucet of a distilled-water bottle, bubbles go up through the water as the water pours out.

72. A clothes wringer has a long handle. It wrings the clothes drier than you can wring them by hand.

73. You use a crowbar when you want to raise a heavy object such as a rock.

74. Sometimes it is almost impossible to get the top from a jar of canned fruit unless you let a little air under the edge of the lid.

75. It is much easier to carry a carpet sweeper if you take hold near the sweeper part than it is if you take hold at the end of the handle.

76. You can make marks on a paper by rubbing a pencil across it.

77. A motorman sands the track when he wishes to stop the car on a hill.

78. On a faucet there is a handle with which to turn it.

79. Before we pull candy we butter our fingers.

80. You can scratch glass with very hard steel but not with wood.

Section 11. Inertia.

Why is it that if you push a miniature auto rapidly, it will go straight?

Why does the earth never stop moving?

When you jerk a piece of paper from under an inkwell, why does the inkwell stay still?

When you are riding in a car and the car stops suddenly, you are thrown forward; your body tends to keep moving in the direction in which the car was going. When a car starts suddenly, you are thrown backward; your body tends to stay where it was before the car started.

When an automobile bumps into anything, the people in the front seat are often thrown forward through the wind shield and are badly cut; their bodies keep on going in the direction in which the automobile was going.

When you jump off a moving street car, you have to run along in the direction the car was going or you fall down; your body tries to keep going in the same direction it was moving, and if your feet do not keep up, you topple forward.

Generally we think that it takes force to start things to move, but that they will stop of their own accord. This is not true. It takes just as much force to stop a thing as it does to start it, and what usually does the stopping is friction.

When you shoot a stone in a sling shot, the contracting rubber pulls the stone forward very rapidly. The stone has been started and it would go on and never stop if nothing interfered with it. For instance, if you should go away off in space—say halfway between here and a star—and shoot a stone from a sling shot, that stone would keep on going as fast as it was going when it left your sling shot, forever and ever, without stopping, unless it bumped into a star or something. On earth the reason it stops after a while is that it is bumping into something all the time—into the particles of air while it is in the air, and finally against the earth when it is pulled to the ground by gravity.

If you threw a ball on the moon, the person who caught it would have to have a very thick mitt to protect his hand, and it would never be safe to catch a batted fly. For there is no air on the moon, and therefore nothing would slow the ball down until it hit something; and it would be going as hard and fast when it struck the hand of the one who caught it as when it left your hand or the bat.


Common Science

Подняться наверх