Читать книгу Все лгут. Поисковики, Big Data и Интернет знают о вас всё - Cет Cтивенс-Давидовиц - Страница 4
Часть I
Данные, большие и малые
ОглавлениеПапе и маме
Глава 1
Интуиция вас обманывает
Если вам 33 года от роду и у вас уже несколько Дней благодарения подряд прошли без свиданий, скорее всего, возникнет тема выбора брачного партнера. И у каждого на этот счет свое мнение.
«Сету нужна сумасшедшая девчонка под стать ему», – говорит моя сестра.
«Ты с ума сошла! Ему нужна нормальная девушка, чтобы уравновешивать его», – заявляет брат.
«Сет не сумасшедший», – реагирует мать.
«Ты спятила! Конечно, Сет – настоящий псих», – заявляет отец.
Внезапно в разговор тихо вступает моя застенчивая, говорящая тихим голосом бабушка. Громкие агрессивные нью-йоркские голоса затихают, и все взгляды сосредотачиваются на небольшой старушке с короткими золотистыми волосами, говорящей с легким восточно-европейским акцентом.
«Сет, тебе нужна хорошая девушка. Не слишком красивая. Очень умная. Умеющая ладить с людьми, социальная, чтобы вы могли работать вместе. С чувством юмора, потому что у тебя хорошее чувство юмора».
Почему совет этой пожилой женщины выслушивается в моей семье с таким вниманием и уважением? Моя 88-летняя бабушка видела на своем веку больше, чем все остальные, сидевшие за столом. Она повидала множество браков, одни из которых были счастливыми, другие нет. И на протяжении десятилетий она составляла список качеств, делающих взаимоотношения успешными. За столом в День благодарения бабушка была источником самого большого числа данных. Моя бабушка сама была большими данными.
В этой книге я хочу развеять мифы о науке о данных.
Нравится нам это или нет, но информация играет все более важную роль в жизни каждого из нас – и эта роль будет становиться все значительнее. Сейчас в газетах встречаются целые разделы, полностью посвященные данным. В компаниях есть группы, единственной задачей которых является анализ собранных данных. Инвесторы дают десятки миллионов долларов стартапам, если те могут собрать и сохранить большие объемы данных. Даже если вы никогда не узнаете, как работает регрессия, и не можете рассчитать доверительный интервал, вы наверняка столкнетесь с большим количеством данных – на страницах книг, которые читаете, во время деловых встреч, в которых принимаете участие, в сплетнях, которые доходят до ваших ушей, в курилке или возле кулера, когда пьете воду.
Многих людей беспокоит такое развитие событий. Они запуганы данными, легко теряются и могут совсем запутаться в мире чисел. Они думают, что количественное понимание мира предназначено для избранных левополушарных вундеркиндов, а не для них. Поэтому, едва столкнувшись с цифрами, готовы перевернуть страницу, закончить встречу или сменить тему разговора.
Я потратил десять лет на анализ различных данных, и за это время мне посчастливилось работать со многими из наиболее значимых в этой области людей. Один из самых важных уроков, которые я усвоил, заключается в том, что правильная работа с информацией не настолько сложна, как кажется многим. Лучшие примеры научной работы с данными на самом деле показывают, насколько она интуитивна[19].
Что же делает науку о данных столь интуитивной? По своей сути эта дисциплина занимается выявлением и отбором правильных данных, а также прогнозированием того, как одна переменная повлияет на другую. Люди постоянно этим занимаются.
Просто подумайте, как бабушка давала мне совет по поводу моих отношений. Она использовала большую базу данных об отношениях, загружавшуюся в ее мозг в течение практически всей жизни, – истории, которые она слышала от членов своей семьи, от друзей и знакомых. Сначала она ограничила данные для анализа примерами отношений, в которых мужчина имел многие из тех качеств, которые есть и у меня – чувствительность, склонность к самоизоляции, чувство юмора. Затем сосредоточилась на ключевых качествах известных ей в этой выборке женщин: насколько они были добрыми, умными, красивыми. Потом сопоставила эти ключевые качества женщин с важнейшим элементом отношений: были ли они хорошими или нет. И, наконец, сообщила результат. Другими словами, она заметила закономерности и предсказала, как одна переменная будет влиять на другую. В этой ситуации бабушка выступила как специалист по работе с данными.
Вы тоже являетесь специалистом по работе с данными. Будучи ребенком, вы замечали: стоило начать плакать, как мама сразу обращала на вас внимание. Это тоже часть науки по работе с данными. Достигнув совершеннолетия, вы заметили, что, если слишком много ныть и жаловаться, люди начнут избегать общения с вами. Это тоже наука о данных. Когда люди меньше общаются с вами, у вас портится настроение, вы недовольны. Когда вы менее счастливы, вы менее дружелюбны, а когда вы менее дружелюбны, люди предпочитают держаться от вас еще дальше. Это наука о данных. Везде наука о данных. Повсюду наука о данных.
Поскольку она, таким образом, является практически естественным делом, я обнаружил, что в лучших вариантах анализа больших данных может разобраться практически любой умный человек. Если вы не можете понять, в чем суть исследования, проблема скорее всего не в вас, а в самом исследовании.
Вам нужны доказательства того, что научная работа с большими данными, как правило, является интуитивно понятной? Недавно я наткнулся на исследование, которое может оказаться одним из самых важных среди всех, проводившихся в течение последних нескольких лет. Оно также является одним из наиболее интуитивных, которые я когда-либо видел. Мне хочется, чтобы вы подумали не только о его важности, но и о том, насколько оно естественно и похоже на то, что делала моя бабушка.
Этот эксперимент проводила команда ученых из Колумбийского университета и из Microsoft. Целью был поиск симптомов, позволяющих предсказать зарождение у людей рака поджелудочной железы[20]. При этом заболевании только три процента больных проживают больше пяти лет, но раннее обнаружение болезни может удвоить шансы пациента.
Какой метод применили исследователи? Они использовали данные десятков тысяч анонимных пользователей Bing – поисковика Microsoft. При этом выбирали пользователей, у которых недавно был диагностирован рак поджелудочной железы – основываясь на безошибочном поисковом запросе, например: «Мне только что диагностировали рак поджелудочной железы» или «Мне сказали, что у меня рак поджелудочной железы, чего ожидать?»
Далее ученые искали запросы относительно возникающих симптомов. Они сравнили данные небольшого количества пользователей, сообщивших о своем диагнозе не сразу, с теми, кто этого вообще не сделал. Другими словами, попытались выявить, какие симптомы беспокоили тех, кто признался в своем диагнозе только через несколько недель или месяцев.
Результаты оказались просто поразительными. Признаками рака поджелудочной железы оказались боль в спине, а затем пожелтение кожи. Поисковый запрос только о боли в спине по большей части не относился к раку. Аналогично, поисковый запрос «Несварение желудка, а потом боль в животе» свидетельствует о раке поджелудочной железы, тогда как просто несварение желудка без болей не означает этого страшного диагноза. Исследователи смогли выявить от 5 до 15 % случаев практически без ложных срабатываний. Может быть, это не выглядит особо удачным результатом, но если у вас рак поджелудочной железы, даже 10 %-ная возможность удвоить шансы на выживание будет восприниматься как неожиданный подарок судьбы.
Неспециалисту изложенные в статье детали исследования будет трудно осмыслить в полной мере. Они включают в себя много технических терминов, таких как тест Холмогорова – Смирнова[21], смысл которого, признаться, я уже забыл.
Однако обратите внимание, насколько естественно и интуитивно понятно это замечательное исследование на самом фундаментальном уровне. Ученые рассмотрели широкий спектр медицинских случаев и попытались связать симптомы с конкретным заболеванием. А знаете, кто еще использует эту методику, пытаясь выяснить, болен человек или нет? Мужья и жены, отцы и матери, медсестры и врачи. Исходя из своего опыта и знаний, они пытаются соединить лихорадку, головную боль, насморк и боли в желудке с различными недугами. Другими словами, специалисты из Колумбийского университета и Microsoft провели новаторское исследование с использованием самой обычной и очевидной методики, издавна используемой для диагностики.
Но подождите. Давайте сбавим скорость. Если методика наилучшей научной обработки данных является естественной и интуитивно понятной так часто, как я утверждаю, это поднимает фундаментальный вопрос о ценности больших данных. Если люди являются прирожденными специалистами по научной обработке данных, если сама наука о данных является интуитивно понятной, зачем нужны компьютеры и программное обеспечение статистической обработки информации? Зачем нужны тесты Холмогорова – Смирнова? Разве мы не можем просто использовать свою интуицию и все? Разве мы не можем поступать так же, как это делает моя бабушка, как работают медсестры и врачи?
Подобное ощущение усилилось после выхода бестселлера Малкольма Гладуэлла «Blink» («Озарение»), в котором воспевается магия человеческих инстинктов. Гладуэлл рассказывает истории о людях, которые, полагаясь исключительно на свою интуицию, могут сказать, является ли статуя поддельной, еще до удара – промажет ли теннисист по мячу или сколько клиент готов заплатить – до того, как тот откроет рот. Герои этой книги не высчитывают регрессии, они не определяют доверительные интервалы и не запускают тесты Холмогорова – Смирнова, но при этом, как правило, делают удивительные прогнозы. Многие люди подсознательно поддерживают мнение Гладуэлла об интуиции – они доверяют своему нутру и своим чувствам. Фанаты романа наверняка восторженно подчеркнут мудрость моей бабушки и ее способность давать советы по поводу человеческих отношений без помощи компьютеров. Поклонники «Blink», уверен, менее склонны восхищаться моими исследованиями или другими наработками, описанными в этой книге, поскольку здесь используются компьютеры. Если большие данные – компьютерные, а не информация от моей бабушки – революционны, следует доказать, что они способны на большее, чем наша интуиция, работающая без посторонней помощи. Хотя она, как отмечает Гладуэлл, зачастую и может выдавать просто потрясающие результаты.
19
Я говорю о той части их анализа, которую хорошо знаю – о части, пытающейся объяснить и предсказать поведение человека. Я не говорю об искусственном интеллекте, который пытается, скажем, водить машину.
20
John Paparrizos, Ryan W. White, and Eric Horvitz, «Screening for Pancreatic Adenocarcinoma Using Signals from Web Search Logs: Feasibility Study and Results» («Скрининг поджелудочной железы аденокарцинома, используя сигналы из журналов веб-поиск: технико-экономическое обоснование и результаты»), Journal of Oncology Practice (2016).
21
Это способ определить, насколько точно созданная модель соответствует данным. – Прим. ред.