Читать книгу Завтрак с Эйнштейном. Экзотическая физика повседневных предметов - Чад Орцель - Страница 5
Глава 1
Восход: Фундаментальные взаимодействия
Электромагнитная сила
ОглавлениеМы постоянно встречаем электромагнитные взаимодействия в повседневной жизни, как в форме статического электричества, потрескивающего в стопке носков, что недавно из сушилки, или в виде магнитиков, которые держат школьные рисунки на холодильнике. В отличие от гравитации, которая всегда притягивает, электромагнитная сила может быть как притягивающей, так и отталкивающей: электрические заряды бывают положительной и отрицательной разновидности, и у магнитов есть как южный, так и северный полюса. Электромагнитное взаимодействие еще более всепроникающе, чем статические заряды и магниты, но в реальности оно ответственно за нашу способность видеть, можно сказать, вообще всё.
В ранние 1800-е годы электромагнетизм был горячо обсуждаемой темой в физике вместе со многими явлениями, включая электрические токи и магниты, которые изучались тогда впервые. Среди тех, кто изучал электромагнетизм, был британский физик Майкл Фарадей. Он открыл множество технических новшеств, какие играют ключевые роли в наших утренних действиях, включая его работу по сжиженным газам, их применяют в охлаждающих приборах. Также он разработал «клетку Фарадея»[13] (среди многих других приборов), она помогает не выпускать наружу электромагнитные поля внутри микроволновой печи. Несомненно, наиболее важное его открытие заключалось в том, что не только электрические токи могут воздействовать на расположенные неподалеку магниты, но и движущиеся магниты и изменяющиеся магнитные поля могут создавать ток. Это положило основу огромному спектру систем коммерческого производства в современной жизни. Он был одним из первых, кто понял поведение зарядов и магнитов с точки зрения электрических и магнитных полей, заполняющих пустое пространство и определяющих движение удаленных частиц.
Фарадей – знаковая фигура в физике, один из троих, на кого был похож Эйнштейн в своих работах (двое других – это Ньютон и Джеймс Клерк Максвелл[14]). Увы, Эйнштейн был выходцем из «низов» и, хотя был великим экспериментатором с глубокой проницательностью в области физики, ему не хватало математической подготовки, необходимой для перевода его догадок в такие формы, какие убедили бы физиков его времени всерьез принять концепцию электромагнитного «поля». Джеймсу Клерку Максвеллу, происходившему из зажиточного шотландского семейства, выпало создать твердую базу для электрических и магнитных полей. В 1860-егоды Максвелл показал, что все известные электрические и магнитные явления могут быть объяснены простым набором математических отношений, говоря современным языком, четырьмя «уравнениями Максвелла»[15], достаточно компактных, чтобы уместиться на футболке или кофейной чашке. Электрические и магнитные поля Фарадея – это реальные вещи, связанные между собой. Изменяющееся электрическое поле создает магнитное поле, и наоборот. Уравнения Максвелла охватывают все известные электрические и магнитные явления, а также предсказали новое, объединенное, электромагнитное поле. Если колеблющееся электрическое поле правильным образом скомбинировать с колеблющимся магнитным полем, они будут поддерживать друг друга, проходя через пространство. Изменяющееся электрическое поле будет вызывать изменения в магнитном, и наоборот. Эти электромагнитные волны путешествуют со скоростью света, и уже было известно, что свет ведет себя как волна.
Уравнения Максвелла были быстро восприняты как объяснение природы света, а именно, что это в основе своей электромагнитное явление. Электромагнетизм объясняет взаимодействие света, материи и, как мы увидим в следующих главах, природу взаимодействия между материальными объектами и электромагнитными полями. Это подготовило почву для множества открытий, которые и основали квантовую механику.
Электромагнитные силы также во многом ответственны за работу тех объектов, с которыми мы сталкиваемся каждый день. Обычная материя сделана из атомов, они, в свою очередь, состоят из более мелких частиц, отличающихся своим электрическим зарядом: положительно заряженных протонов, отрицательно заряженных электронов и имеющих нейтральный электрический заряд нейтронов. Атом состоит из положительно заряженного ядра, содержащего протоны и нейтроны, и окружено облаком электронов, притянутых электромагнитным влиянием ядра.
Как уже упоминалось, электромагнитное взаимодействие гораздо более сильное, чем гравитация. Этот факт прекрасно иллюстрируется трюком, который можно показывать на вечеринках: если потереть резиновый шарик о свои волосы и потом прикрепить к потолку. Во время трения очень маленькая часть атомов в шарике будет захватывать электроны из атомов ваших волос, придавая ему небольшой отрицательный заряд[16]. Притяжение между этим маленьким зарядом и атомами потолка достаточно сильное, чтобы удерживать шарик на потолке, преодолевая гравитационную тягу всей Земли, которая в миллиарды миллиардов раз больше его массы.
Сила электромагнетизма – незаменимый фактор в работе Солнца. Электромагнитные взаимодействия отвечают за столкновения между атомами, которые превращают энергию, почерпнутую из гравитации, в жар. По мере роста температуры газа, падающего на растущую звезду, она становится достаточно горячей – около 100 000 кельвинов или почти 180 000 градусов по Фаренгейту[17], чтобы отделить электроны в атомах водорода от протонов в ядре, производя газ с электрически заряженными частицами – плазму. Гравитация продолжает спрессовывать плазму, но взаимное отталкивание между положительно заряженными протонами разделяет их, сопротивляясь тяге гравитации. По мере того как формирующаяся звезда втягивает все больше газа, температура возрастает до все более высоких уровней.
Несмотря на огромную разницу между электромагнетизмом и гравитацией, плазма, однако, не может полностью избежать гравитации, поскольку электроны, которые были частью облака газа, все еще в ней. Они движутся слишком быстро, чтобы быть захваченными протонами и создать атомы, но они продолжают сохранять звезду в целом электрически нейтральной. Если бы в ней были только протоны, взаимное отталкивание такого огромного скопления положительно заряженных частиц разорвало бы звезду на части в один миг. Благодаря нейтрализующему действию электронов, каждый отдельный протон ощущает силу только нескольких ближайших соседей, в то время как гравитационная тяга, спрессовывающая звезду, исходит от массы всех частиц до единой. Чем больше газа добавляется, тем сильнее и сильнее становится гравитационная сила, и в конце концов она превозмогает электромагнитную силу.
Электромагнитные взаимодействия могут замедлить сжатие горячей плазмы, коллапсирующей под действием гравитации, но один электромагнетизм не может остановить коллапс и создать стабильную звезду. Чтобы создать стабильное солнце, какое мы знаем, требуется невероятный выброс энергии, ведущей к еще большим температурам, которые приводят нас к следующему игроку в нашей истории – сильному ядерному взаимодействию.
13
Устройство, изобретенное М. Фарадеем в 1936 г., для экранирования аппаратуры от внешних электромагнитных полей. – Прим. ред.
14
М а к с в е л л, Джеймс Клерк (1831–1879) – шотландский физик, математик и механик. – Прим. ред.
15
Система уравнений, описывавших электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах. – Прим. ред.
16
Ваши волосы остаются, соответственно, с положительным зарядом, поэтому этот трюк заставит тонкие волосы встать дыбом. Теперь уже позитивно заряженные волосы отталкивают друг друга и пытаются отдалиться друг от друга, насколько это возможно. – Прим. авт.
17
Один кельвин равен одному градусу Цельсия, но шкала Кельвина не имеет отрицательных чисел и начинается от абсолютного нуля (температуры, при которой молекулярная активность минимальна). Вода замерзает при 0 градусов по Цельсию, что около 273 градусов Кельвина. – Прим. авт.